Some hydrogels having novel molecular structures

a b s t r a c t Hydrogels are important materials for a variety of applications, particularly biomedical devices, but they generally have poor mechanical properties since they consist predom- inantly of water held in place by a relatively fragile polymer network. This brief review describes a few novel methods to control or improve the mechanical properties of hydro- gels including slide-ring gels, double-network gels, nanocomposite gels, and photoactive gels.Ourgoalistoencouragemoreresearcherstobeawareofandtoexploitthesemethods.

[1]  Xinqiao Jia,et al.  Structural Analysis and Mechanical Characterization of Hyaluronic Acid-Based Doubly Cross-Linked Networks. , 2009, Macromolecules.

[2]  Takeshi Karino,et al.  Structure and Dynamics of Poly(N-isopropylacrylamide)−Clay Nanocomposite Gels , 2004 .

[3]  J. Gong,et al.  Necking Phenomenon of Double-Network Gels , 2006 .

[4]  Yoshimi Tanaka,et al.  Importance of entanglement between first and second components in high-strength double network gels , 2007 .

[5]  Zang-Hee Cho,et al.  Controlled magnetic nanofiber hydrogels by clustering ferritin. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[6]  P. Flory Elasticity of polymer networks cross-linked in states of strain , 1960 .

[7]  K. Urayama,et al.  Anomaly in stretching-induced swelling of slide-ring gels with movable cross-links , 2009 .

[8]  Y. Osada,et al.  Biomechanical properties of high-toughness double network hydrogels. , 2005, Biomaterials.

[9]  Kristi S Anseth,et al.  Three-dimensional biochemical patterning of click-based composite hydrogels via thiolene photopolymerization. , 2008, Biomacromolecules.

[10]  P. Calvert Hydrogels for Soft Machines , 2009 .

[11]  C. Mijangos,et al.  New hydrogels based on the interpenetration of physical gels of agarose and chemical gels of polyacrylamide , 2009 .

[12]  T. Kurokawa,et al.  Localized Yielding Around Crack Tips of Double-Network Gels , 2008 .

[13]  Eric Elliott,et al.  Mechanism of Forming Organic/Inorganic Network Structures during In-situ Free-Radical Polymerization in PNIPA−Clay Nanocomposite Hydrogels , 2005 .

[14]  T. Kurokawa,et al.  Effect of polymer entanglement on the toughening of double network hydrogels. , 2005, The journal of physical chemistry. B.

[15]  C. Frank,et al.  Effect of Particle Distribution on Morphological and Mechanical Properties of Filled Hydrogel Composites , 2008 .

[16]  Yibo Ling,et al.  Effects of modulus and surface chemistry of thiol-ene photopolymers in nanoimprinting. , 2007, Nano letters.

[17]  Huan Li,et al.  Tunable Optical and Swelling/Deswelling Properties Associated with Control of the Coil-to-Globule Transition of Poly(N-isopropylacrylamide) in Polymer−Clay Nanocomposite Gels , 2007 .

[18]  H. Brown A Model of the Fracture of Double Network Gels , 2007 .

[19]  M. Toney,et al.  Influence of Interfacial Layer Between Nanoparticles and Polymeric Matrix on Viscoelastic Properties of Hydrogel Nanocomposites , 2009 .

[20]  Jindřich Kopeček,et al.  Hydrogels: From soft contact lenses and implants to self‐assembled nanomaterials , 2009 .

[21]  Huan Li,et al.  Hydrogels with Hydrophobic Surfaces: Abnormally High Contact Angles for Water on PNIPA Nanocomposite Hydrogels , 2007 .

[22]  Kazutoshi Haraguchi,et al.  Nanocomposite gels : new advanced functional soft materials , 2007 .

[23]  Xiaofen Li,et al.  Double‐network hydrogel with high mechanical strength prepared from two biocompatible polymers , 2009 .

[24]  C. Nah,et al.  Some Physical Characteristics of Double-Networked Natural Rubber , 1997 .

[25]  K. Ito,et al.  SANS studies on spatial inhomogeneities of slide-ring gels , 2004 .

[26]  J. Araki,et al.  New solvent for polyrotaxane. II. Dissolution behavior of polyrotaxane in ionic liquids and preparation of ionic liquid-containing slide-ring gels , 2006 .

[27]  W. Goddard,et al.  Mechanical and transport properties of the poly(ethylene oxide)-poly(acrylic acid) double network hydrogel from molecular dynamic simulations. , 2007, The journal of physical chemistry. B.

[28]  Ying Luo,et al.  A photolabile hydrogel for guided three-dimensional cell growth and migration , 2004, Nature materials.

[29]  H. Gibson,et al.  Rotaxanes, catenanes, polyrotaxanes, polycatenanes and related materials , 1994 .

[30]  D. Kohane,et al.  HYDROGELS IN DRUG DELIVERY: PROGRESS AND CHALLENGES , 2008 .

[31]  T. Kurokawa,et al.  Tear Velocity Dependence of High-Strength Double Network Gels in Comparison with Fast and Slow Relaxation Modes Observed by Scanning Microscopic Light Scattering , 2008 .

[32]  Yoshihito Osada,et al.  Mechanically Strong Hydrogels with Ultra‐Low Frictional Coefficients , 2005 .

[33]  Meifang Zhu,et al.  Surface-Patterning of Nanocomposite Hydrogel Film by Direct Replica Molding and Subsequent Change in Pattern Size , 2008 .

[34]  Toru Takehisa,et al.  Reversible force generation in a temperature-responsive nanocomposite hydrogel consisting of poly(N-isopropylacrylamide) and clay. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[35]  Ali Miserez,et al.  Non-entropic and reversible long-range deformation of an encapsulating bioelastomer. , 2009, Nature materials.

[36]  J. Gong,et al.  Large Strain Hysteresis and Mullins Effect of Tough Double-Network Hydrogels , 2007 .

[37]  Yuji Yamamoto,et al.  Design and Fabrication of a High-Strength Hydrogel with Ideally Homogeneous Network Structure from Tetrahedron-like Macromonomers , 2008 .

[38]  G. Stucky,et al.  Highly Versatile and Robust Materials for Soft Imprint Lithography Based on Thiol‐ene Click Chemistry , 2008 .

[39]  Zhiyong Tang,et al.  Can nature's design be improved upon? High strength, transparent nacre-like nanocomposites with double network of sacrificial cross links. , 2008, The journal of physical chemistry. B.

[40]  Kristi S. Anseth,et al.  Photodegradable Hydrogels for Dynamic Tuning of Physical and Chemical Properties , 2009, Science.

[41]  M. G. Finn,et al.  Synthesis of Photocleavable Linear Macromonomers by ATRP and Star Macromonomers by a Tandem ATRP-Click Reaction: Precursors to Photodegradable Model Networks , 2007 .

[42]  Molly S. Shoichet,et al.  Three-dimensional Chemical Patterning of Transparent Hydrogels , 2008 .

[43]  C. M. Roland,et al.  Mechanical and Optical Behavior of Double Network Rubbers , 2000 .

[44]  J. Gong,et al.  Highly Extensible Double‐Network Gels with Self‐Assembling Anisotropic Structure , 2008 .

[45]  Toru Takehisa,et al.  Effects of Clay Content on the Properties of Nanocomposite Hydrogels Composed of Poly(N-isopropylacrylamide) and Clay , 2002 .

[46]  S. Granick,et al.  A multitude of macromolecules , 2004, Nature materials.

[47]  Yun Lu,et al.  Conducting hydrogels with enhanced mechanical strength , 2009 .

[48]  Won-Gun Koh,et al.  Biomimetic strain hardening in interpenetrating polymer network hydrogels , 2007 .

[49]  T. Kurokawa,et al.  Friction of a soft hydrogel on rough solid substrates. , 2008, Soft matter.

[50]  K. Ito,et al.  Photoresponsive Ring-Slide Gels , 2007 .

[51]  J Fraser Stoddart,et al.  Azobenzene-based light-responsive hydrogel system. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[52]  J. Gong,et al.  The molecular origin of enhanced toughness in double-network hydrogels: A neutron scattering study☆ , 2007 .

[53]  K. Ito,et al.  Photoresponsive Slide‐Ring Gel , 2007 .

[54]  T. Ikeda,et al.  Photomobile polymer materials: towards light-driven plastic motors. , 2008, Angewandte Chemie.

[55]  Mustapha Mabrouki,et al.  PEG-Based Hydrogel Synthesis via the Photodimerization of Anthracene Groups , 2002 .

[56]  Kohzo Ito,et al.  Slide-ring materials using topological supramolecular architecture , 2010 .

[57]  Jean-Pierre Sauvage,et al.  Molecular Catenanes, Rotaxanes and Knots , 1999 .

[58]  T. Kurokawa,et al.  Double‐Network Hydrogels with Extremely High Mechanical Strength , 2003 .

[59]  Leslie H. Sperling,et al.  Interpenetrating Polymer Networks and Related Materials , 1981 .

[60]  Mitchell T. Ong,et al.  Force-induced activation of covalent bonds in mechanoresponsive polymeric materials , 2009, Nature.

[61]  K. Ito,et al.  The Polyrotaxane Gel: A Topological Gel by Figure‐of‐Eight Cross‐links , 2001 .

[62]  C. M. Roland,et al.  Role of strain crystallization in the fatigue resistance of double network elastomers , 2003 .

[63]  D. S. Pearson,et al.  Stress–strain behavior in polymer networks containing nonlocalized junctions , 1977 .

[64]  Y. Amemiya,et al.  Small-Angle X-ray Scattering Study of the Pulley Effect of Slide-Ring Gels , 2006 .

[65]  Toru Takehisa,et al.  Nanocomposite Hydrogels: A Unique Organic–Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De‐swelling Properties , 2002 .

[66]  J. Gong,et al.  Thermodynamic interactions in double-network hydrogels. , 2008, The journal of physical chemistry. B.

[67]  Takeshi Karino,et al.  Small-angle neutron scattering study on uniaxially stretched poly(N-isopropylacrylamide)-clay nanocomposite Gels , 2005 .

[68]  C. Frank,et al.  Defect generation surrounding nanoparticles in a cross-linked hydrogel network. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[69]  Patrick J. Schexnailder,et al.  Nanocomposite polymer hydrogels , 2009 .

[70]  J. Gong,et al.  Molecular model for toughening in double-network hydrogels. , 2008, The journal of physical chemistry. B.

[71]  T. Kurokawa,et al.  Direct Observation of Damage Zone around Crack Tips in Double-Network Gels , 2009 .

[72]  Wen-Fu Lee,et al.  Effect of montmorillonite on the swelling behavior and drug-release behavior of nanocomposite hydrogels , 2003 .

[73]  T. Kurokawa,et al.  Determination of fracture energy of high strength double network hydrogels. , 2005, The journal of physical chemistry. B.

[74]  Toru Takehisa,et al.  Compositional effects on mechanical properties of Nanocomposite hydrogels composed of poly(N, N-dimethylacrylamide) and clay , 2003 .

[75]  G. Hadziioannou,et al.  From high molecular weight precursor polyrotaxanes to supramolecular sliding networks. The ‘sliding gels’ , 2005 .

[76]  Sadik Amajjahe,et al.  Polymerization of Included Monomers and Behaviour of Resulting Polymers , 2009 .

[77]  J. Gong,et al.  Polyelectrolyte Gels-Fundamentals and Applications , 2006 .

[78]  Shengyu Feng,et al.  High mechanical strength hydrogels preparation using hydrophilic reactive microgels as crosslinking agents , 2009 .

[79]  Kazutoshi Haraguchi,et al.  Characteristic Sliding Frictional Behavior on the Surface of Nanocomposite Hydrogels Consisting of Organic-Inorganic Network Structure , 2005 .

[80]  Aaron M. Kushner,et al.  Biomimetic design of reversibly unfolding cross-linker to enhance mechanical properties of 3D network polymers. , 2007, Journal of the American Chemical Society.

[81]  Jun Li,et al.  Cyclodextrin Inclusion Polymers Forming Hydrogels , 2009 .

[82]  O. Okay,et al.  Tough organogels based on polyisobutylene with aligned porous structures , 2008 .

[83]  Carolyn R Bertozzi,et al.  Copper-free click chemistry for the in situ crosslinking of photodegradable star polymers. , 2008, Chemical communications.

[84]  Toru Takehisa,et al.  Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels. , 2006, Biomacromolecules.

[85]  T. Karino,et al.  Deformation Studies on Polymer-Clay Nanocomposite Gels , 2007 .

[86]  Xia Tong,et al.  Photoresponsive Nanogels Based on Photocontrollable Cross-Links , 2009 .

[87]  K. Haraguchi,et al.  Polymer–Clay Nanocomposites Exhibiting Abnormal Necking Phenomena Accompanied by Extremely Large Reversible Elongations and Excellent Transparency , 2006 .

[88]  Yoshihito Osada,et al.  Biodegradation of high-toughness double network hydrogels as potential materials for artificial cartilage. , 2007, Journal of biomedical materials research. Part A.

[89]  Yoshihito Osada,et al.  High Mechanical Strength Double‐Network Hydrogel with Bacterial Cellulose , 2004 .

[90]  Huan Li,et al.  Mechanical Properties and Structure of Polymer−Clay Nanocomposite Gels with High Clay Content , 2006 .

[91]  Dirk Kuckling,et al.  Responsive hydrogel layers—from synthesis to applications , 2009 .

[92]  Kohzo Ito,et al.  Novel Cross-Linking Concept of Polymer Network: Synthesis, Structure, and Properties of Slide-Ring Gels with Freely Movable Junctions , 2007 .

[93]  Yoshihito Osada,et al.  Structural Characteristics of Double Network Gels with Extremely High Mechanical Strength , 2004 .

[94]  Yoshimi Tanaka,et al.  Novel hydrogels with excellent mechanical performance , 2005 .

[95]  Kazutoshi Haraguchi,et al.  Spontaneous Formation of Characteristic Layered Morphologies in Porous Nanocomposites Prepared from Nanocomposite Hydrogels , 2005 .

[96]  L. Ye,et al.  Study on the Polyvinylalcohol/Montmorillonite Composite Hydrogel , 2009 .

[97]  K. Okumura,et al.  Toughness of double elastic networks , 2004 .

[98]  Huan Li,et al.  Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels. , 2005, Angewandte Chemie.

[99]  K. Haraguchi,et al.  Optical anisotropy in polymer–clay nanocomposite hydrogel and its change on uniaxial deformation , 2007 .

[100]  M. G. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions , 2001 .

[101]  Yoshimi Tanaka,et al.  True Chemical Structure of Double Network Hydrogels , 2009 .

[102]  C. M. Roland,et al.  The Payne Effect in Double Network Elastomers , 2005 .

[103]  Jian Ping Gong,et al.  Friction and lubrication of hydrogels-its richness and complexity. , 2006, Soft matter.

[104]  W. Oppermann,et al.  Swelling, elasticity, and spatial inhomogeneity of poly(N-isopropylacrylamide)/clay nanocomposite hydrogels , 2005 .

[105]  Pixin Wang,et al.  Fabrication and characterization of microstructured and pH sensitive interpenetrating networks hydrogel films and application in drug delivery field , 2009 .

[106]  K. Ito,et al.  SANS Studies on Deformation Mechanism of Slide-Ring Gel , 2005 .