An efficient dynamic reliability-dependent bit allocation for biometric discretization

A biometric discretization scheme converts biometric features into a binary string via segmenting every one-dimensional feature space into multiple labelled intervals, assigning each interval-captured feature element with a short binary string and concatenating the binary output of all feature elements into a bit string. This paper proposes a bit allocation algorithm for biometric discretization to allocate bits dynamically to every feature element based on a Binary Reflected Gray code. Unlike existing bit allocation schemes, our scheme bases upon a combination of bit statistics (reliability measure) and signal to noise ratio (discriminability measure) in performing feature selection and bit allocation procedures. Several empirical comparative studies are conducted extensively on two popular face datasets to justify the efficiency and feasibility of our proposed approach.

[1]  Hao Feng,et al.  Private key generation from on-line handwritten signatures , 2002, Inf. Manag. Comput. Secur..

[2]  Xudong Jiang,et al.  Eigenfeature Regularization and Extraction in Face Recognition , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Tsuhan Chen,et al.  Biometrics-based cryptographic key generation , 2004, 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763).

[4]  Evgeny Verbitskiy,et al.  RELIABLE BIOMETRIC AUTHENTICATION WITH PRIVACY PROTECTION , 2007 .

[5]  Andrew Beng Jin Teoh,et al.  Personalised cryptographic key generation based on FaceHashing , 2004, Comput. Secur..

[6]  Raymond N. J. Veldhuis,et al.  Practical Biometric Authentication with Template Protection , 2005, AVBPA.

[7]  R.N.J. Veldhuis,et al.  Multi-Bits Biometric String Generation based on the Likelihood Ratio , 2007, 2007 First IEEE International Conference on Biometrics: Theory, Applications, and Systems.

[8]  Martin Wattenberg,et al.  A fuzzy commitment scheme , 1999, CCS '99.

[9]  Andrew Beng Jin Teoh,et al.  2Ns Discretisation of BioPhasor in Cancellable Biometrics , 2007, ICB.

[10]  Chun Chen,et al.  Biometric Quantization through Detection Rate Optimized Bit Allocation , 2009, EURASIP J. Adv. Signal Process..

[11]  Qi Li,et al.  Cryptographic key generation from voice , 2001, Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001.

[12]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[13]  Patrick J. Flynn,et al.  Overview of the face recognition grand challenge , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[14]  Terence Sim,et al.  The CMU Pose, Illumination, and Expression (PIE) database , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[15]  Anil K. Jain,et al.  Biometric cryptosystems: issues and challenges , 2004, Proceedings of the IEEE.

[16]  Andrew Beng Jin Teoh,et al.  Generation of Replaceable Cryptographic Keys from Dynamic Handwritten Signatures , 2006, ICB.

[17]  Nasir D. Memon,et al.  Secure Sketch for Biometric Templates , 2006, ASIACRYPT.

[18]  Jean-Paul M. G. Linnartz,et al.  New Shielding Functions to Enhance Privacy and Prevent Misuse of Biometric Templates , 2003, AVBPA.

[19]  Andrew Beng Jin Teoh,et al.  Cancellable biometrics and annotations on BioHash , 2008, Pattern Recognit..

[20]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[21]  Rafail Ostrovsky,et al.  Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data , 2004, SIAM J. Comput..

[22]  Anton H. M. Akkermans,et al.  Face recognition with renewable and privacy preserving binary templates , 2005, Fourth IEEE Workshop on Automatic Identification Advanced Technologies (AutoID'05).

[23]  Qi Li,et al.  Using voice to generate cryptographic keys , 2001, Odyssey.