Author Correction: Visualizing group II intron dynamics between the first and second steps of splicing

[1]  L. Casalino,et al.  Understanding the mechanistic basis of non-coding RNA through molecular dynamics simulations. , 2019, Journal of structural biology.

[2]  K. Rajashankar,et al.  Structural basis for the second step of group II intron splicing , 2018, Nature Communications.

[3]  Laura Riccardi,et al.  Metal–ligand interactions in drug design , 2018, Nature Reviews Chemistry.

[4]  P. Carloni,et al.  A Strategically Located Arg/Lys Residue Promotes Correct Base Paring During Nucleic Acid Biosynthesis in Polymerases. , 2018, Journal of the American Chemical Society.

[5]  K. Nagai,et al.  Molecular Mechanism and Evolution of Nuclear Pre-mRNA and Group II Intron Splicing: Insights from Cryo-Electron Microscopy Structures. , 2018, Chemical reviews.

[6]  M. Marcia,et al.  Second-Shell Basic Residues Expand the Two-Metal-Ion Architecture of DNA and RNA Processing Enzymes , 2018, Structure.

[7]  E. Westhof,et al.  Crystal structures of a group II intron lariat primed for reverse splicing , 2016, Science.

[8]  P. Carloni,et al.  A Self-Activated Mechanism for Nucleic Acid Polymerization Catalyzed by DNA/RNA Polymerases. , 2016, Journal of the American Chemical Society.

[9]  Alessandra Magistrato,et al.  Who Activates the Nucleophile in Ribozyme Catalysis? An Answer from the Splicing Mechanism of Group II Introns. , 2016, Journal of the American Chemical Society.

[10]  M. Belfort,et al.  Structure of a Group II Intron Complexed with its Reverse Transcriptase , 2016, Nature Structural &Molecular Biology.

[11]  Lin Wang,et al.  DelPhiPKa web server: predicting pKa of proteins, RNAs and DNAs , 2015, Bioinform..

[12]  A. Pyle,et al.  Crystal structure of group II intron domain 1 reveals a template for RNA assembly , 2015, Nature chemical biology.

[13]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[14]  R. Sigel,et al.  Protonation-Dependent Base Flipping at Neutral pH in the Catalytic Triad of a Self-Splicing Bacterial Group II Intron. , 2015, Angewandte Chemie.

[15]  Isabel Chillón,et al.  In vitro characterization of the splicing efficiency and fidelity of the RmInt1 group II intron as a means of controlling the dispersion of its host mobile element , 2014, RNA.

[16]  K. Rajashankar,et al.  Crystal structure of a eukaryotic group II intron lariat , 2014, Nature.

[17]  A. Pyle,et al.  Principles of ion recognition in RNA: insights from the group II intron structures , 2014, RNA.

[18]  A. Pyle,et al.  Solving nucleic acid structures by molecular replacement: examples from group II intron studies , 2013, Acta crystallographica. Section D, Biological crystallography.

[19]  Pengfei Li,et al.  Rational Design of Particle Mesh Ewald Compatible Lennard-Jones Parameters for +2 Metal Cations in Explicit Solvent. , 2013, Journal of chemical theory and computation.

[20]  A. Pyle,et al.  Now on display: a gallery of group II intron structures at different stages of catalysis , 2013, Mobile DNA.

[21]  A. Pyle,et al.  Visualizing Group II Intron Catalysis through the Stages of Splicing , 2012, Cell.

[22]  M. Parrinello,et al.  Metadynamics with Adaptive Gaussians. , 2012, Journal of chemical theory and computation.

[23]  A. Pyle,et al.  Crystal structure of a group II intron in the pre-catalytic state , 2012, Nature Structural &Molecular Biology.

[24]  N. Toro,et al.  Use of RmInt1, a Group IIB Intron Lacking the Intron-Encoded Protein Endonuclease Domain, in Gene Targeting , 2010, Applied and Environmental Microbiology.

[25]  Isabel Chillón,et al.  Splicing of the Sinorhizobium meliloti RmInt1 group II intron provides evidence of retroelement behavior , 2010, Nucleic acids research.

[26]  A. Pyle The tertiary structure of group II introns: implications for biological function and evolution , 2010, Critical reviews in biochemistry and molecular biology.

[27]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[28]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[29]  A. Pyle,et al.  The 2′-OH group at the group II intron terminus acts as a proton shuttle , 2009, Nature chemical biology.

[30]  Massimiliano Bonomi,et al.  PLUMED: A portable plugin for free-energy calculations with molecular dynamics , 2009, Comput. Phys. Commun..

[31]  R. Padgett,et al.  A glimpse into the active site of a group II intron and maybe the spliceosome, too. , 2008, RNA.

[32]  T. Cheatham,et al.  Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations , 2008, The journal of physical chemistry. B.

[33]  Duncan J. Smith,et al.  "Nought may endure but mutability": spliceosome dynamics and the regulation of splicing. , 2008, Molecular cell.

[34]  Anna Marie Pyle,et al.  Crystal Structure of a Self-Spliced Group II Intron , 2008, Science.

[35]  A. Pyle,et al.  Three essential and conserved regions of the group II intron are proximal to the 5'-splice site. , 2007, RNA.

[36]  Joost VandeVondele,et al.  Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. , 2007, The Journal of chemical physics.

[37]  Jack Snoeyink,et al.  Nucleic Acids Research Advance Access published April 22, 2007 MolProbity: all-atom contacts and structure validation for proteins and nucleic acids , 2007 .

[38]  M. Klein,et al.  Modeling the charge distribution at metal sites in proteins for molecular dynamics simulations. , 2007, Journal of structural biology.

[39]  Francesco Luigi Gervasio,et al.  From A to B in free energy space. , 2007, The Journal of chemical physics.

[40]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[41]  M. Konarska,et al.  Repositioning of the reaction intermediate within the catalytic center of the spliceosome. , 2006, Molecular cell.

[42]  Alessandro Laio,et al.  An Efficient Real Space Multigrid QM/MM Electrostatic Coupling. , 2005, Journal of chemical theory and computation.

[43]  S. Hamill,et al.  A single active-site region for a group II intron , 2005, Nature Structural &Molecular Biology.

[44]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[45]  S. Butcher,et al.  Dynamics in the U6 RNA intramolecular stem-loop: a base flipping conformational change. , 2004, Biochemistry.

[46]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[47]  M. Konarska,et al.  Suppression of multiple substrate mutations by spliceosomal prp8 alleles suggests functional correlations with ribosomal ambiguity mutants. , 2004, Molecular cell.

[48]  J. VandeVondele,et al.  An efficient orbital transformation method for electronic structure calculations , 2003 .

[49]  S. Butcher,et al.  Metal binding and base ionization in the U6 RNA intramolecular stem-loop structure , 2002, Nature Structural Biology.

[50]  H. L. Murray,et al.  Deletion of a conserved dinucleotide inhibits the second step of group II intron splicing. , 2000, RNA.

[51]  B. Sullenger,et al.  Group II introns designed to insert into therapeutically relevant DNA target sites in human cells. , 2000, Science.

[52]  A. Pyle,et al.  A tertiary interaction that links active-site domains to the 5′ splice site of a group II intron , 2000, Nature.

[53]  M. Gerstein,et al.  The morph server: a standardized system for analyzing and visualizing macromolecular motions in a database framework. , 2000, Nucleic acids research.

[54]  S. Nakano,et al.  General acid-base catalysis in the mechanism of a hepatitis delta virus ribozyme. , 2000, Science.

[55]  Michele Parrinello,et al.  A hybrid Gaussian and plane wave density functional scheme , 1997 .

[56]  M. Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1995, Physical review. B, Condensed matter.

[57]  P. Perlman,et al.  Stereochemical selectivity of group II intron splicing, reverse splicing, and hydrolysis reactions , 1995, Molecular and cellular biology.

[58]  P. Perlman,et al.  Catalytically critical nucleotide in domain 5 of a group II intron. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[60]  H. Madhani,et al.  Randomization-selection analysis of snRNAs in vivo: evidence for a tertiary interaction in the spliceosome. , 1994, Genes & development.

[61]  Wolfgang Kabsch,et al.  Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants , 1993 .

[62]  C. Guthrie,et al.  A conformational rearrangement in the spliceosome is dependent on PRP16 and ATP hydrolysis. , 1992, The EMBO journal.

[63]  P. Fabrizio,et al.  Two domains of yeast U6 small nuclear RNA required for both steps of nuclear precursor messenger RNA splicing , 1990, Science.

[64]  F. Michel,et al.  Base-pairing interactions involving the 5' and 3'-terminal nucleotides of group II self-splicing introns. , 1990, Journal of molecular biology.

[65]  P. Kollman,et al.  Atomic charges derived from semiempirical methods , 1990 .

[66]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[67]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[68]  P. Sharp,et al.  Cofactor requirements of splicing of purified messenger RNA precursors , 1984, Nature.

[69]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[70]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[71]  H. Eyring The Activated Complex in Chemical Reactions , 1935 .

[72]  Marco Marcia,et al.  Using Molecular Replacement Phasing to Study the Structure and Function of RNA. , 2016, Methods in molecular biology.

[73]  A. Pyle,et al.  Native Purification and Analysis of Long RNAs. , 2015, Methods in enzymology.

[74]  Joost VandeVondele,et al.  cp2k: atomistic simulations of condensed matter systems , 2014 .

[75]  P. Perlman,et al.  A structural analysis of the group II intron active site and implications for the spliceosome. , 2010, RNA.

[76]  Berk Hess,et al.  P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation. , 2008, Journal of chemical theory and computation.

[77]  Daniel Svozil,et al.  Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. , 2007, Biophysical journal.

[78]  A. Lambowitz,et al.  17 Group II Introns: Ribozymes That Splice RNA and Invade DNA , 2006 .

[79]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[80]  M. G. Evans,et al.  Some applications of the transition state method to the calculation of reaction velocities, especially in solution , 1935 .