GOW2: A global wave hindcast for coastal applications

Abstract Global wave hindcasts provide wave climate information for long time periods which helps to improve our understanding of climate variability, long term trends and extremes. This information is extremely useful for coastal studies and can be used both directly or as boundary conditions for regional and local downscalings. This work presents the GOW2 database, a long-term wave hindcast covering the world coastline with improved resolution in coastal areas and along ocean islands. For developing the GOW2 hindcast, WAVEWATCH III wave model is used in a multigrid two-way nesting configuration from 1979 onwards. The multigrid includes a global grid of half degree spatial resolution, specific grids configured for the Arctic and the Antarctic polar areas, and a grid of higher resolution (about 25 km) for all the coastal locations at a depth shallower than 200 m. Available outputs include hourly sea state parameters (e.g. significant wave height, peak period, mean wave direction) and series of 3-h spectra at more than 40000 locations in coastal areas. Comparisons with instrumental data show a clear improvement with respect to existing global hindcasts, especially in semi-enclosed basins and areas with a complex bathymetry. The effect of tropical cyclones is also well-captured thanks to the high resolution of the forcings and the wave model setup. The new database shows a high potential for a variety of applications in coastal engineering.

[1]  I. Young,et al.  Global Trends in Wind Speed and Wave Height , 2011, Science.

[2]  Paula Camus,et al.  High resolution downscaled ocean waves (DOW) reanalysis in coastal areas , 2013 .

[3]  Impact assessment of coastal hazards due to future changes of tropical cyclones in the North Pacific Ocean , 2016 .

[4]  Roberto Mínguez,et al.  A methodology for deriving extreme nearshore sea conditions for structural design and flood risk analysis , 2014 .

[5]  M. Iredell,et al.  The NCEP Climate Forecast System Version 2 , 2014 .

[6]  H. Murakami Tropical cyclones in reanalysis data sets , 2014 .

[7]  T. Barnett,et al.  Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP) , 1973 .

[8]  Inigo J. Losada,et al.  Directional Calibration of Wave Reanalysis Databases Using Instrumental Data , 2011 .

[9]  Justin E. Stopa,et al.  Assessment of wave energy resources in Hawaii , 2011 .

[10]  Katja Wöckner-Kluwe,et al.  Climate services for marine applications in Europe , 2015 .

[11]  I. Losada,et al.  A method for spatial calibration of wave hindcast data bases , 2008 .

[12]  J. Stopa,et al.  Thirty-four years of Hawaii wave hindcast from downscaling of climate forecast system reanalysis , 2016 .

[13]  Stefan Zieger,et al.  Observation-Based Source Terms in the Third-Generation Wave Model WAVEWATCH III: Updates and Verification , 2015, Journal of Physical Oceanography.

[14]  E. Rogers,et al.  Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation , 2009, 0907.4240.

[15]  Inigo J. Losada,et al.  Extreme wave climate variability in southern Europe using satellite data , 2010 .

[16]  Uang,et al.  The NCEP Climate Forecast System Reanalysis , 2010 .

[17]  I. Losada,et al.  Global extreme wave height variability based on satellite data , 2011 .

[18]  P. Camus,et al.  A Multimodal Wave Spectrum–Based Approach for Statistical Downscaling of Local Wave Climate , 2017 .

[19]  Fabrice Ardhuin,et al.  Comparison and validation of physical wave parameterizations in spectral wave models , 2016 .

[20]  Mark D. Powell,et al.  Observed and Modeled Wind and Water-Level Response from Tropical Storm Marco (1990) , 1994 .

[21]  Hendrik L. Tolman,et al.  Alleviating the Garden Sprinkler Effect in wind wave models , 2002 .

[22]  Kwok Fai Cheung,et al.  Modeling of tropical cyclone winds and waves for emergency management , 2003 .

[23]  Marcel Zijlema,et al.  Wave dissipation by vegetation with layer schematization in SWAN , 2012 .

[24]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[25]  J. A. Battjes,et al.  ENERGY LOSS AND SET-UP DUE TO BREAKING OF RANDOM WAVES , 1978 .

[26]  G. Holland An Analytic Model of the Wind and Pressure Profiles in Hurricanes , 1980 .

[27]  Xavier Bertin,et al.  A significant increase in wave height in the North Atlantic Ocean over the 20th century , 2013 .

[28]  I. Losada,et al.  Spectral Ocean Wave Climate Variability Based on Atmospheric Circulation Patterns , 2014 .

[29]  Giovanni Besio,et al.  Parameterization of unresolved obstacles in wave modelling: A source term approach , 2015 .

[30]  I. Losada,et al.  A global wave power resource and its seasonal, interannual and long-term variability , 2015 .

[31]  Fabrice Ardhuin,et al.  A global wave parameter database for geophysical applications. Part 2: Model validation with improved source term parameterization , 2013 .

[32]  Inigo J. Losada,et al.  A Global Ocean Wave (GOW) calibrated reanalysis from 1948 onwards , 2012 .

[33]  S. Zieger,et al.  A revised assessment of Australia's national wave energy resource , 2017 .

[34]  E. Rogers,et al.  Semi-empirical dissipation source functions for ocean waves: Part I, definition, calibration and validation. Fabrice ArdhuinJean-Francois Filipot and Rudy Magne Service Hydrographique et Oceanographique de la Marine, Brest, France , 2010 .

[35]  Hendrik L. Tolman,et al.  Treatment of unresolved islands and ice in wind wave models , 2003 .

[36]  Jose-Henrique G. M. Alves,et al.  Numerical modeling of wind waves generated by tropical cyclones using moving grids , 2005 .

[37]  K. Taylor Summarizing multiple aspects of model performance in a single diagram , 2001 .

[38]  B. P. Leonard,et al.  A stable and accurate convective modelling procedure based on quadratic upstream interpolation , 1990 .

[39]  P. Jones,et al.  The Twentieth Century Reanalysis Project , 2009 .

[40]  J. Reitsma,et al.  Coastal waters classification based on physical attributes along the NE Atlantic region. An approach for rocky macroalgae potential distribution , 2012 .

[41]  Stephen J. Lord,et al.  A Nested Spectral Model for Hurricane Track Forecasting , 1992 .

[42]  B. P. Leonard,et al.  The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection , 1991 .

[43]  C. J. Neumann,et al.  The International Best Track Archive for Climate Stewardship (IBTrACS): unifying tropical cyclone data. , 2010 .

[44]  Luigi Cavaleri,et al.  Wave Modeling—Missing the Peaks , 2009 .

[45]  K. Hasselmann,et al.  Computations and Parameterizations of the Nonlinear Energy Transfer in a Gravity-Wave Specturm. Part II: Parameterizations of the Nonlinear Energy Transfer for Application in Wave Models , 1985 .

[46]  H. Tolman,et al.  Validation of a thirty year wave hindcast using the Climate Forecast System Reanalysis winds , 2013 .

[47]  Fabrice Ardhuin,et al.  Observation and parameterization of small icebergs: Drifting breakwaters in the southern ocean , 2011 .

[48]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[49]  A. Bentamy,et al.  Analysis of Wave Height Variability Using Altimeter Measurements: Application to the Mediterranean Sea , 2007 .

[50]  I. Young,et al.  Global estimates of extreme wind speed and wave height , 2011 .

[51]  Inigo J. Losada,et al.  Variability of extreme wave heights in the northeast Pacific Ocean based on buoy measurements , 2008 .

[52]  Hendrik L. Tolman,et al.  Obstruction grids for spectral wave models , 2008 .

[53]  Paula Camus,et al.  A weather‐type statistical downscaling framework for ocean wave climate , 2014 .

[54]  Fabrice Ardhuin,et al.  Swell transformation across the continental shelf. Part I: Attenuation and directional broadening , 2003 .

[55]  Andrew T. Cox,et al.  Global distribution and risk to shipping of very extreme sea states (VESS) , 2015 .

[56]  A. Sterl,et al.  A New Nonparametric Method to Correct Model Data: Application to Significant Wave Height from the ERA-40 Re-Analysis , 2005 .

[57]  Walter H. F. Smith,et al.  A global, self‐consistent, hierarchical, high‐resolution shoreline database , 1996 .