A necessary condition for disturbance decoupling with quadratic stability in switched linear systems

This paper deals with the problem of decoupling by feedback a disturbance input from the output of a switched linear system, while achieving, by a suitable choice of the switching rule, quadratic stability. Using geometric methods, a structural obstruction to the solvability of the problem is found and a necessary condition is stated.

[1]  G. Basile,et al.  Controlled and conditioned invariant subspaces in linear system theory , 1969 .

[2]  Anna Maria Perdon,et al.  Robust disturbance decoupling problem for parameter dependent families of linear systems, , 1993, Autom..

[3]  G. Basile,et al.  Controlled and conditioned invariants in linear system theory , 1992 .

[4]  Naohisa Otsuka,et al.  Generalized S(C, A, B)-Pairs for Uncertain Linear Infinite-Dimensional Systems , 2009, J. Appl. Math..

[5]  Daizhan Cheng,et al.  Stabilizer design of planar switched linear systems , 2008, Syst. Control. Lett..

[6]  Naohisa Otsuka,et al.  Parameter-insensitive disturbance rejection for infinite-dimensional systems , 1997 .

[7]  Naohisa Otsuka Generalized (C, A, B)-pairs and parameter insensitive disturbance-rejection problems with dynamic compensator , 1999, IEEE Trans. Autom. Control..

[8]  Giovanni Marro,et al.  On the robust controlled invariant , 1987 .

[9]  S. P. Bhattacharyya Generalized Controllability, (A, B)-invariant Subspaces and Parameter Invariant Control , 1983 .

[10]  Naohisa Otsuka Disturbance decoupling with quadratic stability for switched linear systems , 2010, Syst. Control. Lett..

[11]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[12]  Anna Maria Perdon,et al.  Robust Disturbance Decoupling Problem for Parameter Dependent Families of Linear Systems , 1991 .

[13]  Giovanni Marro,et al.  Computing the maximum robust controlled invariant subspace , 1991 .