On Kato–Ponce and fractional Leibniz

We show that in the Kato-Ponce inequality $\|J^s(fg)-fJ^s g\|_p \lesssim \| \partial f \|_{\infty} \| J^{s-1} g \|_p + \| J^s f \|_p \|g\|_{\infty}$, the $J^s f$ term on the RHS can be replaced by $J^{s-1} \partial f$. This solves a question raised in Kato-Ponce \cite{KP88}. We propose and prove a new fractional Leibniz rule for $D^s=(-\Delta)^{s/2}$ and similar operators, generalizing the Kenig-Ponce-Vega estimate \cite{KPV93} to all $s>0$. We also prove a family of generalized and refined Kato-Ponce type inequalities which include many commutator estimates as special cases. To showcase the sharpness of the estimates at various endpoint cases, we construct several counterexamples. In particular, we show that in the original Kato-Ponce inequality, the $L^{\infty}$-norm on the RHS cannot be replaced by the weaker BMO norm. Some divergence-free counterexamples are also included.

[1]  L. Grafakos,et al.  A remark on an endpoint Kato-Ponce inequality , 2013, Differential and Integral Equations.

[2]  James C. Robinson,et al.  Higher order commutator estimates and local existence for the non-resistive MHD equations and related models , 2014, 1401.5018.

[3]  C. Kenig,et al.  Well‐posedness and scattering results for the generalized korteweg‐de vries equation via the contraction principle , 1993 .

[4]  Tosio Kato,et al.  Commutator estimates and the euler and navier‐stokes equations , 1988 .

[5]  Hideo Kozono,et al.  Bilinear estimates in BMO and the Navier-Stokes equations , 2000 .

[6]  Jean Bourgain,et al.  Strong illposedness of the incompressible Euler equation in integer Cm spaces , 2014, Geometric and Functional Analysis.

[7]  Jean Bourgain,et al.  On an endpoint Kato-Ponce inequality , 2014, Differential and Integral Equations.

[8]  P. Constantin,et al.  Generalized surface quasi‐geostrophic equations with singular velocities , 2011, 1101.3537.

[9]  Jean Bourgain,et al.  Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces , 2013, 1307.7090.

[10]  Z. Ye Regularity criterion of the 2D Bénard equations with critical and supercritical dissipation , 2017 .

[11]  James C. Robinson,et al.  Existence and Uniqueness for a Coupled Parabolic-Elliptic Model with Applications to Magnetic Relaxation , 2013, 1303.6352.

[12]  Á. Bényi,et al.  Smoothing of commutators for a H\"ormander class of bilinear pseudodifferential operators , 2013, 1305.4307.

[13]  E. Stein,et al.  Hp spaces of several variables , 1972 .

[14]  H. Triebel Theory Of Function Spaces , 1983 .

[15]  Seungly Oh,et al.  The Kato-Ponce Inequality , 2013, 1303.5144.

[16]  Ronald R. Coifman,et al.  Au delà des opérateurs pseudo-différentiels , 1978 .

[17]  Charles Fefferman,et al.  Some Maximal Inequalities , 1971 .

[18]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[19]  Zhen Lei,et al.  Infinite-time Exponential Growth of the Euler Equation on Two-dimensional Torus , 2016, 1608.07010.