A materials perspective on Li-ion batteries at extreme temperatures

[1]  F. Ding,et al.  High-temperature performance of all-solid-state battery assembled with 95(0.7Li2S-0.3P2S5)-5Li3PO4 glass electrolyte , 2016 .

[2]  Marco-Tulio F. Rodrigues,et al.  Rate limiting activity of charge transfer during lithiation from ionic liquids , 2016 .

[3]  Tao Yu,et al.  Polyimide binder by combining with polyimide separator for enhancing the electrochemical performance of lithium ion batteries , 2016 .

[4]  Weishan Li,et al.  A novel imidazole-based electrolyte additive for improved electrochemical performance at elevated temperature of high-voltage LiNi0.5Mn1.5O4 cathodes , 2016 .

[5]  Jeff Dahn,et al.  A systematic study on the reactivity of different grades of charged Li[Ni x Mn y Co z ]O 2 with electrolyte at elevated temperatures using accelerating rate calorimetry , 2016 .

[6]  Z. Zuo,et al.  Effect of Trace Al Surface Doping on the Structure, Surface Chemistry and Low Temperature Performance of LiNi0.5Co0.2Mn0.3O2 Cathode , 2016 .

[7]  H. Pham,et al.  Understanding the interfacial phenomena of a 4.7 V and 55 °C Li-ion battery with Li-rich layered oxide cathode and graphite anode and its correlation to high-energy cycling performance , 2016 .

[8]  S. Okada,et al.  Electrochemical Properties and Thermal Stability of Silicon Monoxide Anode for Rechargeable Lithium-Ion Batteries , 2016 .

[9]  J. Xia,et al.  Tris(trimethylsilyl) borate as an electrolyte additive for high-voltage lithium-ion batteries using LiNi1/3Mn1/3Co1/3O2 cathode , 2016 .

[10]  L. E. Ouatani,et al.  Temperature effects on Li 4 Ti 5 O 12 electrode/electrolyte interfaces at the first cycle: A X-ray Photoelectron Spectroscopy and Scanning Auger Microscopy study , 2016 .

[11]  P. Ajayan,et al.  Ionic Liquid-Organic Carbonate Electrolyte Blends To Stabilize Silicon Electrodes for Extending Lithium Ion Battery Operability to 100 °C. , 2016, ACS applied materials & interfaces.

[12]  P. Ajayan,et al.  Hexagonal Boron Nitride‐Based Electrolyte Composite for Li‐Ion Battery Operation from Room Temperature to 150 °C , 2016 .

[13]  Hongyuan Zhao,et al.  Enhanced elevated-temperature performance of LiAlxSi0.05Mg0.05Mn1.90-xO4 (0≤x≤0.08) cathode materials for high-performance lithium-ion batteries , 2016 .

[14]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[15]  Iek-Heng Chu,et al.  Thermal Stability and Reactivity of Cathode Materials for Li-Ion Batteries. , 2016, ACS applied materials & interfaces.

[16]  B. Scrosati,et al.  Ionic-Liquid-Based Polymer Electrolytes for Battery Applications. , 2016, Angewandte Chemie.

[17]  D. Aurbach,et al.  Low Temperature Performance of Amorphous Monolithic Silicon Anodes: Comparative Study of Silicon and Graphite Electrodes , 2016 .

[18]  Qingsong Wang,et al.  Study on High Temperature Stability of LiNi0.33Co0.33Mn0.33O2/Li4Ti5O12Cells from the Safety Perspective , 2016 .

[19]  C. Ziebert,et al.  Phosphate Based Ceramics As Solid Electrolyte for High Temperature Lithium Ion Batteries , 2016 .

[20]  Weidong He,et al.  Materials insights into low-temperature performances of lithium-ion batteries , 2015 .

[21]  Marco-Tulio F. Rodrigues,et al.  Quasi-Solid Electrolytes for High Temperature Lithium Ion Batteries. , 2015, ACS applied materials & interfaces.

[22]  K. Edström,et al.  Depth profiling the solid electrolyte interphase on lithium titanate (Li4Ti5O12) using synchrotron-based photoelectron spectroscopy , 2015 .

[23]  S. Ong,et al.  Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.

[24]  K. Jalkanen,et al.  Cycle aging of commercial NMC/graphite pouch cells at different temperatures , 2015 .

[25]  Chenghao Yang,et al.  Surfactants assisted synthesis and electrochemical properties of nano-LiFePO4/C cathode materials for low temperature applications , 2015 .

[26]  Feng Wu,et al.  Role of Cobalt Content in Improving the Low-Temperature Performance of Layered Lithium-Rich Cathode Materials for Lithium-Ion Batteries. , 2015, ACS applied materials & interfaces.

[27]  A. Sastry,et al.  Degradation of the solid electrolyte interphase induced by the deposition of manganese ions , 2015 .

[28]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[29]  Y. Chiang,et al.  Mitigating mechanical failure of crystalline silicon electrodes for lithium batteries by morphological design. , 2015, Physical chemistry chemical physics : PCCP.

[30]  T. Yano,et al.  Improved High-Temperature Performance and Surface Chemistry of Graphite/LiMn2O4 Li-Ion Cells by Fluorosilane-Based Electrolyte Additive , 2015 .

[31]  Qiang Wu,et al.  Evaluation of the low temperature performance of lithium manganese oxide/lithium titanate lithium-ion batteries for start/stop applications , 2015 .

[32]  Yan‐Bing He,et al.  Suppression of interfacial reactions between Li4Ti5O12 electrode and electrolyte solution via zinc oxide coating , 2015 .

[33]  C. Koo,et al.  Hybrid ionogel electrolytes for high temperature lithium batteries , 2015 .

[34]  Yunlong Zhao,et al.  Hierarchical Carbon Decorated Li3V2(PO4)3 as a Bicontinuous Cathode with High‐Rate Capability and Broad Temperature Adaptability , 2014 .

[35]  Kai Xie,et al.  High temperature property of all-solid-state thin film lithium battery using LiPON electrolyte , 2014 .

[36]  C. Cao,et al.  Lithium titanate epitaxial coating on spinel lithium manganese oxide surface for improving the performance of lithium storage capability. , 2014, ACS applied materials & interfaces.

[37]  M. Wohlfahrt‐Mehrens,et al.  Temperature dependent ageing mechanisms in Lithium-ion batteries – A Post-Mortem study , 2014 .

[38]  G. Amatucci,et al.  Effect of cation and anion doping on microstructure and electrochemical properties of the LiMn1.5Ni0.5O4−δ spinel , 2014 .

[39]  Minggao Ouyang,et al.  Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry , 2014 .

[40]  A. Mauger,et al.  Surface modifications of electrode materials for lithium-ion batteries: status and trends , 2014, Ionics.

[41]  Taeeun Yim,et al.  Effect of additives on electrochemical performance of lithium nickel cobalt manganese oxide at high temperature , 2014 .

[42]  Andrea Balducci,et al.  Lithium Ion Transport and Solvation in N-Butyl-N-methylpyrrolidinium Bis(trifluoromethanesulfonyl)imide–Propylene Carbonate Mixtures , 2014 .

[43]  Il-Doo Kim,et al.  Synthesis of an Al2O3-coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium ion batteries , 2014 .

[44]  Jiulin Wang,et al.  A polyimide ion-conductive protection layer to suppress side reactions on Li4Ti5O12 electrodes at elevated temperature , 2014 .

[45]  Bo Zhang,et al.  Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery , 2014, Scientific Reports.

[46]  D. Mitlin,et al.  Si nanotubes ALD coated with TiO2, TiN or Al2O3 as high performance lithium ion battery anodes , 2014 .

[47]  A. Benayad,et al.  Is Li4Ti5O12 a solid-electrolyte-interphase-free electrode material in Li-ion batteries? Reactivity between the Li4Ti5O12 electrode and electrolyte , 2014 .

[48]  Ji‐Guang Zhang,et al.  Mixed salts of LiTFSI and LiBOB for stable LiFePO4-based batteries at elevated temperatures , 2014 .

[49]  Rohan Akolkar,et al.  Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature , 2014 .

[50]  L. Liao,et al.  Enhancement of low-temperature performance of LiFePO4 electrode by butyl sultone as electrolyte additive , 2014 .

[51]  Yu‐Guo Guo,et al.  A novel polymer electrolyte with improved high-temperature-tolerance up to 170 °C for high-temperature lithium-ion batteries , 2013 .

[52]  K. Amine,et al.  Fluorinated electrolytes for Li-ion battery: An FEC-based electrolyte for high voltage LiNi0.5Mn1.5O4/graphite couple , 2013 .

[53]  Michael Pecht,et al.  Lessons Learned from the 787 Dreamliner Issue on Lithium-Ion Battery Reliability , 2013 .

[54]  Yu‐Guo Guo,et al.  Enhanced working temperature of PEO-based polymer electrolyte via porous PTFE film as an efficient heat resister , 2013 .

[55]  Rémi Dedryvère,et al.  Lithium secondary batteries working at very high temperature: capacity fade and understanding of aging mechanisms , 2013 .

[56]  Meiten Koh,et al.  Fluorinated electrolytes for 5 V lithium-ion battery chemistry , 2013 .

[57]  Pierre-Louis Taberna,et al.  Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from −50 to 80 °C , 2013 .

[58]  Rachid Meziane,et al.  Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. , 2013, Nature materials.

[59]  M. Ishikawa,et al.  High-performance graphite negative electrode in a bis(fluorosulfonyl)imide-based ionic liquid , 2013 .

[60]  Yang Ren,et al.  New class of nonaqueous electrolytes for long-life and safe lithium-ion batteries , 2013, Nature Communications.

[61]  S. Mitra,et al.  High-rate and high-energy-density lithium-ion battery anode containing 2D MoS₂ nanowall and cellulose binder. , 2013, ACS applied materials & interfaces.

[62]  G. Cui,et al.  A high temperature operating nanofibrous polyimide separator in Li-ion battery , 2013 .

[63]  Lei Li,et al.  Tris(trimethylsilyl) borate as an electrolyte additive to improve the cyclability of LiMn2O4 cathode for lithium-ion battery , 2013 .

[64]  L. Liao,et al.  Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode , 2013 .

[65]  Wei Lv,et al.  Gassing in Li4Ti5O12-based batteries and its remedy , 2012, Scientific Reports.

[66]  Huang Zhang,et al.  Effects of carbon coating and metal ions doping on low temperature electrochemical properties of LiFePO4 cathode material , 2012 .

[67]  Chong Seung Yoon,et al.  Nanostructured high-energy cathode materials for advanced lithium batteries. , 2012, Nature materials.

[68]  Kang Xu,et al.  Li^+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells , 2012 .

[69]  V. Battaglia,et al.  Hard carbon: a promising lithium-ion battery anode for high temperature applications with ionic electrolyte , 2012 .

[70]  L. Liao,et al.  Effects of temperature on charge/discharge behaviors of LiFePO4 cathode for Li-ion batteries , 2012 .

[71]  M. Winter,et al.  Thermally Induced Reactions between Lithiated Nano-Silicon Electrode and Electrolyte for Lithium-Ion Batteries , 2012 .

[72]  Hui Zhan,et al.  A New Class of Phosphates as Co-Solvents for Nonflammable Lithium Ion Batteries Electrolytes , 2012 .

[73]  W. Henderson,et al.  Phase Behavior of Ionic Liquid–LiX Mixtures: Pyrrolidinium Cations and TFSI– Anions – Linking Structure to Transport Properties , 2011 .

[74]  John T. Vaughey,et al.  Variable temperature performance of intermetallic lithium-ion battery anode materials , 2011 .

[75]  Zhibin Zhou,et al.  Lithium (fluorosulfonyl)(nonafluorobutanesulfonyl)imide (LiFNFSI) as conducting salt to improve the high-temperature resilience of lithium-ion cells , 2011 .

[76]  Chusheng Chen,et al.  A comparative study on the low-temperature performance of LiFePO4/C and Li3V2(PO4)(3)/C cathodes for lithium-ion batteries , 2011 .

[77]  Marshall C. Smart,et al.  Lithium-Ion Electrolytes Containing Ester Cosolvents for Improved Low Temperature Performance , 2010 .

[78]  Doron Aurbach,et al.  On the Study of Electrolyte Solutions for Li-Ion Batteries That Can Work Over a Wide Temperature Range , 2010 .

[79]  Sung Chul Hong,et al.  Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly(vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries , 2010 .

[80]  Young Gyu Kim,et al.  Linear-Sweep Thermammetry Study on Corrosion Behavior of Al Current Collector in Ionic Liquid Solvent , 2010 .

[81]  Dinh Vinh Do,et al.  Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery , 2010 .

[82]  Jaephil Cho,et al.  High Performance LiCoO2 Cathode Materials at 60 ° C for Lithium Secondary Batteries Prepared by the Facile Nanoscale Dry-Coating Method , 2010 .

[83]  D. J. Lee,et al.  Effect of fluoroethylene carbonate on high temperature capacity retention of LiMn2O4/graphite Li-ion cells , 2010 .

[84]  Zonghai Chen,et al.  Lithium Tetrafluoro Oxalato Phosphate as Electrolyte Additive for Lithium-Ion Cells , 2010 .

[85]  R. E. Del Sesto,et al.  Limited thermal stability of imidazolium and pyrrolidinium ionic liquids , 2009 .

[86]  Mo-hua Yang,et al.  Effects of TiO2 coating on high-temperature cycle performance of LiFePO4-based lithium-ion batteries , 2008 .

[87]  K. Xu Tailoring Electrolyte Composition for LiBOB , 2008 .

[88]  C. Delmas,et al.  Electrochemical performances in temperature for a C-containing LiFePO4 composite synthesized at high temperature , 2008 .

[89]  F. Gao,et al.  Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries , 2008 .

[90]  Karim Zaghib,et al.  Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials , 2007 .

[91]  J. Tarascon,et al.  Development and implementation of a high temperature electrochemical cell for lithium batteries , 2007 .

[92]  Linda F. Nazar,et al.  Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries , 2007 .

[93]  J. Dahn,et al.  Phase Changes in Electrochemically Lithiated Silicon at Elevated Temperature , 2006 .

[94]  B. Scrosati,et al.  Advanced, lithium batteries based on high-performance composite polymer electrolytes , 2006 .

[95]  Shengbo Zhang,et al.  An unique lithium salt for the improved electrolyte of Li-ion battery , 2006 .

[96]  Jiang Fan,et al.  Studies on Charging Lithium-Ion Cells at Low Temperatures , 2006 .

[97]  Brett L. Lucht,et al.  Thermal Decomposition of LiPF6-Based Electrolytes for Lithium-Ion Batteries , 2005 .

[98]  T. Ohzuku,et al.  Electrochemical behaviors of LiCo 1/3Ni 1/3Mn 1/3O 2 in lithium batteries at elevated temperatures , 2005 .

[99]  M. Ue,et al.  Li [ C 2 F 5 BF 3 ] as an Electrolyte Salt for 4 V Class Lithium-Ion Cells , 2005 .

[100]  Y. W. Kim,et al.  Thermal history effects on the ionic conductivity of PEO-salt electrolytes , 2004 .

[101]  Kang Xu,et al.  Electrochemical impedance study on the low temperature of Li-ion batteries , 2004 .

[102]  Chester G. Motloch,et al.  Effect of cathode composition on capacity fade, impedance rise and power fade in high-power, lithium-ion cells☆ , 2003 .

[103]  Marshall C. Smart,et al.  Improved performance of lithium-ion cells with the use of fluorinated carbonate-based electrolytes , 2003 .

[104]  Nobuko Yoshimoto,et al.  Anodic behavior of aluminum current collector in LiTFSI solutions with different solvent compositions , 2003 .

[105]  Kang Xu,et al.  The low temperature performance of Li-ion batteries , 2003 .

[106]  Kang Xu,et al.  Low temperature performance of graphite electrode in Li-ion cells , 2002 .

[107]  Kang Xu,et al.  A new approach toward improved low temperature performance of Li-ion battery , 2002 .

[108]  D. D. MacNeil,et al.  A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes , 2002 .

[109]  Subbarao Surampudi,et al.  Use of Organic Esters as Cosolvents in Electrolytes for Lithium-Ion Batteries with Improved Low Temperature Performance , 2002 .

[110]  D. Aurbach,et al.  On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries , 2002 .

[111]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[112]  D. Linden Handbook Of Batteries , 2001 .

[113]  Richard A. Marsh,et al.  Electrochemical Stability of Copper in Lithium‐Ion Battery Electrolytes , 2000 .

[114]  J. Sakamoto,et al.  The Limits of Low‐Temperature Performance of Li‐Ion Cells , 2000 .

[115]  Edward J. Plichta,et al.  A low-temperature electrolyte for lithium and lithium-ion batteries , 2000 .

[116]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .