Using the Renyi entropy to describe quantum dissipative systems in statistical mechanics

We develop a formalism for describing quantum dissipative systems in statistical mechanics based on the quantum Renyi entropy. We derive the quantum Renyi distribution from the principle of maximum quantum Renyi entropy and differentiate this distribution (the temperature density matrix) with respect to the inverse temperature to obtain the Bloch equation. We then use the Feynman path integral with a modified Mensky functional to obtain a Lindblad-type equation. From this equation using projection operators, we derive the integro-differential equation for the reduced temperature statistical operator, an analogue of the Zwanzig equation in statistical mechanics, and find its formal solution in the form of a series in the class of summable functions.

[1]  Willers G. Doetsch. (o. Prof. a. d. Univ. Freiburg i. B.), Anleitung zum Praktischen Gebrauch der Laplace-Transformation. Mit einem Tabellenanhang von Dipl.-Math. R. Herschel. 198 S. m. 12 Abb. München 1956. R. Oldenbourg. Preis geb. 22,— DM , 1957 .

[2]  R. Zwanzig Ensemble Method in the Theory of Irreversibility , 1960 .

[3]  Jan Havrda,et al.  Quantification method of classification processes. Concept of structural a-entropy , 1967, Kybernetika.

[4]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[5]  G. Doetsch Anleitung zum praktischen Gebrauch der Laplace-Transformation und der Z-Transformation , 1981 .

[6]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[7]  Relaxation and hydrodynamic processes , 1997 .

[8]  A. Holevo Coding Theorems for Quantum Channels , 1999 .

[9]  Alexander Semenovich Holevo,et al.  Quantum coding theorems , 1998 .

[10]  Michael B. Mensky,et al.  Quantum Measurements and Decoherence , 2000 .

[11]  A. G. Bashkirov,et al.  Information entropy and power-law distributions for chaotic systems , 2000 .

[12]  A. G. Bashkirov,et al.  The distribution function for a subsystem experiencing temperature fluctuations , 2002 .

[13]  Vasily E Tarasov Fractional generalization of Liouville equations. , 2004, Chaos.

[14]  A. G. Bashkirov Renyi entropy as a statistical entropy for complex systems , 2006 .

[15]  An equation for the quantum dissipative system in statistical mechanics , 2006 .

[16]  Applying the Linblad equation to quantum dissipative systems , 2006 .

[17]  R. G. Zaripov Evolution of the q-entropy and energy dissipation during irreversible processes in nonextensive systems , 2006 .

[18]  Shunlong Luo Brukner-Zeilinger invariant information , 2007 .