On the effective thermoelectric properties of layered heterogeneous medium

The effective thermoelectric behavior of layered heterogeneous medium is studied, with the distribution of temperature, electric potential, and heat flux solved rigorously from the governing equations, and the effective thermoelectric properties defined through an equivalency principle. It is discovered that the effective thermoelectric figure of merit of a composite medium can be higher than all of its constituents even in the absence of size and interface effects, in contrast to previous studies. This points toward a new route for high figure of merit thermoelectric materials.

[1]  M. Dresselhaus,et al.  Thermal conductivity modeling of core-shell and tubular nanowires. , 2005, Nano letters.

[2]  S. J. L. Billinge,et al.  Nanoscale clusters in the high performance thermoelectric AgPbmSbTem+2 , 2005 .

[3]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[4]  Pierre F. P. Poudeu,et al.  High figure of merit in nanostructured n-type KPbmSbTe m+2 thermoelectric materials , 2010 .

[5]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[6]  Gang Chen,et al.  Modified effective medium formulation for the thermal conductivity of nanocomposites , 2007 .

[7]  George S. Nolas,et al.  SKUTTERUDITES : A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications , 1999 .

[8]  H. Callen,et al.  Thermodynamics : an introduction to the physical theories of equilibrium thermostatics and irreversible thermodynamics. , 1966 .

[9]  Gang Chen,et al.  Thermal conductivity modeling of periodic two-dimensional nanocomposites , 2004 .

[10]  D. J. Bergman,et al.  Thermoelectric properties of a composite medium , 1991 .

[11]  M. Dresselhaus,et al.  Modeling study of thermoelectric SiGe nanocomposites , 2009 .

[12]  Qingjie Zhang,et al.  Impact of grain sizes on phonon thermal conductivity of bulk thermoelectric materials , 2005 .

[13]  Min Zhou,et al.  Nanostructured AgPb(m)SbTe(m+2) system bulk materials with enhanced thermoelectric performance. , 2008, Journal of the American Chemical Society.

[14]  Qingjie Zhang,et al.  Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys , 2009 .

[15]  Jian He,et al.  Thermoelectric and transport properties of n-type Bi2Te3 nanocomposites , 2008 .

[16]  G. J. Snyder,et al.  Nanoscale alpha-structural domains in the phonon-glass thermoelectric material beta-Zn4Sb3 , 2007 .

[17]  M. Dresselhaus,et al.  Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction , 2005 .

[18]  J. Kestin,et al.  An Introduction to the Physical Theories of Equilibrium Thermostatics and Irreversible Thermodynamics , 1960 .

[19]  I. Webman,et al.  Thermoelectric power in inhomogeneous materials , 1977 .

[20]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[21]  Jingfeng Li,et al.  Effect of mixed grain sizes on thermoelectric performance of Bi2Te3 compound , 2009 .

[22]  M. Dresselhaus,et al.  Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium. , 2009, Physical review letters.

[23]  Lidong Chen,et al.  Thermoelectrics: Direct Solar Thermal Energy Conversion , 2008 .

[24]  G. J. Snyder,et al.  Effective thermal conductivity of polycrystalline materials with randomly oriented superlattice grains , 2010 .

[25]  Terry M. Tritt,et al.  Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites. , 2010, Nano letters.

[26]  Gang Chen,et al.  Semiclassical model for thermoelectric transport in nanocomposites , 2010 .

[27]  C. M. Thrush,et al.  Thermoelectric power of bismuth nanocomposites. , 2002, Physical review letters.

[28]  J. Honig,et al.  Thermoelectric and Thermomagnetic Effects and Applications , 1967 .

[29]  Eric S. Toberer,et al.  High Thermoelectric Performance in PbTe Due to Large Nanoscale Ag2Te Precipitates and La Doping , 2010 .