Dielectric metasurfaces for distance measurements and three-dimensional imaging

Abstract. Ultrathin metasurfaces have shown the capability to influence all aspects of light propagation. This has made them promising options for replacing conventional bulky imaging optics while adding advantageous optical properties or functionalities. We demonstrate that such metasurfaces can also be applied for single-lens three-dimensional (3-D) imaging based on a specifically engineered point-spread function (PSF). Using Huygens’ metasurfaces with high transmission, we design and realize a phase mask that implements a rotating PSF for 3-D imaging. We experimentally characterize the properties of the realized double-helix PSF, finding that it can uniquely encode object distances within a wide range. Furthermore, we experimentally demonstrate wide-field depth retrieval within a 3-D scene, showing the suitability of metasurfaces to realize optics for 3-D imaging, using just a single camera and lens system.

[1]  Rafael Piestun,et al.  Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system , 2009 .

[2]  Arka Majumdar,et al.  Low contrast dielectric metasurface optics , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[3]  Sjoerd Stallinga,et al.  Single shot three-dimensional imaging using an engineered point spread function. , 2016, Optics express.

[4]  Zhujun Wan,et al.  Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling , 2018, Nature Communications.

[5]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[6]  Federico Capasso,et al.  Achromatic Metasurface Lens at Telecommunication Wavelengths. , 2015, Nano letters.

[7]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[8]  Andrei Faraon,et al.  Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces , 2015, Nature Communications.

[9]  Yuan Hsing Fu,et al.  Printing Beyond sRGB Color Gamut by Mimicking Silicon Nanostructures in Free-Space. , 2017, Nano letters.

[10]  Sean Quirin,et al.  Depth estimation and image recovery using broadband, incoherent illumination with engineered point spread functions [Invited]. , 2013, Applied optics.

[11]  Isabelle Staude,et al.  Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics , 2016 .

[12]  B. Cyganek An Introduction to 3D Computer Vision Techniques and Algorithms , 2009 .

[13]  Lei Wang,et al.  Efficient Polarization-Insensitive Complex Wavefront Control Using Huygens’ Metasurfaces Based on Dielectric Resonant Meta-atoms , 2016, 1602.00755.

[14]  Matthew D. Escarra,et al.  High-Efficiency All-Dielectric Huygens Metasurfaces from the Ultraviolet to the Infrared , 2018 .

[15]  Andrei Faraon,et al.  Computational complex optical field imaging using a designed metasurface diffuser , 2018, Optica.

[16]  Q. Gong,et al.  Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms. , 2016, Nano letters.

[17]  Andrei Faraon,et al.  Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers. , 2015, Optics express.

[18]  Erez Hasman,et al.  Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials , 2018, Science.

[19]  Philippe Lalanne,et al.  Metalenses at visible wavelengths: past, present, perspectives , 2016 .

[20]  Yuri S. Kivshar,et al.  Grayscale transparent metasurface holograms , 2016 .

[21]  Cheng-Wei Qiu,et al.  Noninterleaved Metasurface for (26-1) Spin- and Wavelength-Encoded Holograms. , 2018, Nano letters.

[22]  Yuri S. Kivshar,et al.  Quantum metasurface for multiphoton interference and state reconstruction , 2018, Science.

[23]  Yuri S. Kivshar,et al.  Angle-selective all-dielectric Huygens’ metasurfaces , 2017 .

[24]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[25]  Jingbo Sun,et al.  High-Efficiency All-Dielectric Metasurfaces for Ultracompact Beam Manipulation in Transmission Mode. , 2015, Nano letters.

[26]  Andrei Faraon,et al.  High efficiency double-wavelength dielectric metasurface lenses with dichroic birefringent meta-atoms. , 2016, Optics express.

[27]  P. Genevet,et al.  Recent advances in planar optics: from plasmonic to dielectric metasurfaces , 2017 .

[28]  Samuel J. Lord,et al.  Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function , 2009, Proceedings of the National Academy of Sciences.

[29]  Yuri S. Kivshar,et al.  High‐Efficiency Dielectric Huygens’ Surfaces , 2015 .

[30]  F. Capasso,et al.  Multispectral Chiral Imaging with a Metalens. , 2016, Nano letters.

[31]  Xinan Liang,et al.  A Metalens with a Near-Unity Numerical Aperture. , 2018, Nano letters.

[32]  John A. Rogers,et al.  Three‐Dimensional Nanofabrication with Rubber Stamps and Conformable Photomasks , 2004 .

[33]  Ye Feng Yu,et al.  High‐transmission dielectric metasurface with 2π phase control at visible wavelengths , 2015 .

[34]  Rafael Piestun,et al.  Polarization sensitive, three-dimensional, single-molecule imaging of cells with a double-helix system. , 2009, Optics express.

[35]  Jason Geng,et al.  Structured-light 3D surface imaging: a tutorial , 2011 .

[36]  Highly tunable elastic dielectric metasurface lenses , 2016 .

[37]  J. Valentine,et al.  Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. , 2014, Nano letters.

[38]  Dragomir N. Neshev,et al.  High‐Efficiency All‐Dielectric Metalenses for Mid‐Infrared Imaging , 2017 .

[39]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[40]  Andrei Faraon,et al.  A review of dielectric optical metasurfaces for wavefront control , 2018, Nanophotonics.

[41]  C. H. Chu,et al.  Achromatic metalens array for full-colour light-field imaging , 2019, Nature Nanotechnology.

[42]  William L. Barnes,et al.  Plasmonic meta-atoms and metasurfaces , 2014, Nature Photonics.

[43]  Igal Brener,et al.  Polarization-Independent Silicon Metadevices for Efficient Optical Wavefront Control. , 2015, Nano letters.

[44]  Yoav Y Schechner,et al.  Depth from diffracted rotation. , 2006, Optics letters.

[45]  Andrei Faraon,et al.  MEMS-tunable dielectric metasurface lens , 2017, Nature Communications.

[46]  Sjoerd Stallinga,et al.  High-order-helix point spread functions for monocular three-dimensional imaging with superior aberration robustness. , 2018, Optics express.

[47]  Andreas Tünnermann,et al.  Spatial and Spectral Light Shaping with Metamaterials , 2012, Advanced materials.

[48]  Davood Fathi,et al.  Dielectric metalenses with engineered point spread function. , 2017, Applied optics.

[49]  Seyedeh Mahsa Kamali,et al.  Multiwavelength polarization insensitive lenses based on dielectric metasurfaces with meta-molecules , 2016, 1601.05847.

[50]  Andrei Faraon,et al.  Removing Orientation-Induced Localization Biases in Single-Molecule Microscopy Using a Broadband Metasurface Mask , 2016, Nature Photonics.

[51]  Federico Capasso,et al.  Metalenses: Versatile multifunctional photonic components , 2017, Science.