Hypoellipticity and the Mori–Zwanzig formulation of stochastic differential equations

We develop a thorough mathematical analysis of the effective Mori-Zwanzig equation governing the dynamics of noise-averaged observables in stochastic differential equations driven by multiplicative Gaussian white noise. Such dynamics is generated by a Kolmogorov operator obtained by averaging the Ito representation of the stochastic Liouvillian of the system. Building upon recent work on hypoelliptic operators, we prove that the generator of the EMZ orthogonal dynamics has a spectrum that lies within cusp-shaped region of the complex plane. This allows us to rigorously prove that the EMZ memory kernel and fluctuation terms converge exponentially fast in time to an unique equilibrium state. We apply the new theoretical results to the Langevin dynamics of an interacting particle system widely studied in molecular dynamics, and show that such equilibrium state admits an explicit representation.

[1]  Robert Zwanzig,et al.  Memory Effects in Irreversible Thermodynamics , 1961 .

[2]  H. Mori Transport, Collective Motion, and Brownian Motion , 1965 .

[3]  Tosio Kato Perturbation theory for linear operators , 1966 .

[4]  R. Zwanzig Nonlinear generalized Langevin equations , 1973 .

[5]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[6]  H. Mori,et al.  Contraction of State Variables in Non-Equilibrium Open Systems. II , 1980 .

[7]  H. Mori,et al.  Contraction of State Variables in Non-Equilibrium Open Systems. II , 1980 .

[8]  渡辺 信三 Lectures on stochastic differential equations and Malliavin calculus , 1984 .

[9]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[10]  N. G. van Kampen,et al.  Brownian motion as a problem of eliminating fast variables , 1986 .

[11]  国田 寛 Stochastic flows and stochastic differential equations , 1990 .

[12]  Mtw,et al.  Stochastic flows and stochastic differential equations , 1990 .

[13]  M. Peskin,et al.  An Introduction To Quantum Field Theory , 1995 .

[14]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[15]  Español,et al.  Hydrodynamics from dissipative particle dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  J. Zabczyk,et al.  Ergodicity for Infinite Dimensional Systems: Invariant measures for stochastic evolution equations , 1996 .

[17]  A. J. Chorin,et al.  Optimal Prediction for Hamiltonian Partial Differential Equations , 1999 .

[18]  J. Eckmann,et al.  Non-Equilibrium Statistical Mechanics of Anharmonic Chains Coupled to Two Heat Baths at Different Temperatures , 1998, chao-dyn/9804001.

[19]  J. Eckmann,et al.  Non-Equilibrium Statistical Mechanics¶of Strongly Anharmonic Chains of Oscillators , 1999, chao-dyn/9909035.

[20]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[21]  A J Chorin,et al.  Optimal prediction and the Mori-Zwanzig representation of irreversible processes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[22]  F. Levin An Introduction to Quantum Theory , 2001 .

[23]  M. Hairer,et al.  Spectral Properties of Hypoelliptic Operators , 2002 .

[24]  J. Zinn-Justin Quantum Field Theory and Critical Phenomena , 2002 .

[25]  Alexandre J. Chorin,et al.  Optimal prediction with memory , 2002 .

[26]  Giorgio Turchetti,et al.  Diffusion and memory effects for stochastic processes and fractional Langevin equations , 2003 .

[27]  F. Hérau,et al.  Isotropic Hypoellipticity and Trend to Equilibrium for the Fokker-Planck Equation with a High-Degree Potential , 2004 .

[28]  Panagiotis Stinis Stochastic Optimal Prediction for the Kuramoto-Sivashinsky Equation , 2004, Multiscale Model. Simul..

[29]  Dror Givon,et al.  Existence proof for orthogonal dynamics and the Mori-Zwanzig formalism , 2005 .

[30]  Alexandre J. Chorin,et al.  Problem reduction, renormalization, and memory , 2005 .

[31]  F. Nier,et al.  Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians , 2005 .

[32]  Ian Snook,et al.  The Langevin and Generalised Langevin Approach to the Dynamics of Atomic, Polymeric and Colloidal Systems , 2006 .

[33]  S. I. Denisov,et al.  Generalized Fokker-Planck equation: Derivation and exact solutions , 2008, 0808.0274.

[34]  Eric Darve,et al.  Computing generalized Langevin equations and generalized Fokker–Planck equations , 2009, Proceedings of the National Academy of Sciences.

[35]  P. Dupuis,et al.  Large deviations for stochastic flows of diffeomorphisms , 2010, 1002.4295.

[36]  G. A. Pavliotis,et al.  Exponential return to equilibrium for hypoelliptic quadratic systems , 2011, 1106.2326.

[37]  G. Karniadakis,et al.  A computable evolution equation for the joint response-excitation probability density function of stochastic dynamical systems , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[38]  Daniele Venturi,et al.  Elsevier Editorial System(tm) for Journal of Computational Physics Manuscript Draft Title: New Evolution Equations for the Joint Response-excitation Probability Density Function of Stochastic Solutions to First-order Nonlinear Pdes New Evolution Equations for the Joint Response-excitation Probabilit , 2022 .

[39]  Daniele Venturi,et al.  Supercritical quasi-conduction states in stochastic Rayleigh–Bénard convection , 2012 .

[40]  M. Pinsky Diffusion Processes and Related Problems in Analysis, Volume II , 2012 .

[41]  Panagiotis Stinis,et al.  Renormalized reduced models for singular PDEs , 2011, 1106.1677.

[42]  Shu Takagi,et al.  Bottom-up construction of interaction models of non-Markovian dissipative particle dynamics. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  D Venturi,et al.  Convolutionless Nakajima–Zwanzig equations for stochastic analysis in nonlinear dynamical systems , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[44]  Heyrim Cho,et al.  Statistical analysis and simulation of random shocks in stochastic Burgers equation , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[45]  George Em Karniadakis,et al.  Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism. , 2015, The Journal of chemical physics.

[46]  Alexandre J. Chorin,et al.  Data-based stochastic model reduction for the Kuramoto--Sivashinsky equation , 2015, 1509.09279.

[47]  Panos Stinis,et al.  Renormalized Mori–Zwanzig-reduced models for systems without scale separation , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[48]  K. Huth Transport , 2015, Canadian Medical Association Journal.

[49]  G. Karniadakis,et al.  Mori-Zwanzig Approach to Uncertainty Quantification , 2015 .

[50]  Nathan A. Baker,et al.  Data-driven parameterization of the generalized Langevin equation , 2016, Proceedings of the National Academy of Sciences.

[51]  Daniele Venturi,et al.  Duality and Conditional Expectations in the Nakajima-Mori-Zwanzig Formulation , 2016, 1610.01696.

[52]  K. Duraisamy,et al.  Non-Markovian Closure Models for Large Eddy Simulations using the Mori-Zwanzig Formalism , 2016, 1611.03311.

[53]  D. Venturi The Numerical Approximation of Nonlinear Functionals and Functional Differential Equations , 2016, 1604.05250.

[54]  Kristian Kirsch,et al.  Methods Of Modern Mathematical Physics , 2016 .

[55]  Karthik Duraisamy,et al.  A dynamic subgrid scale model for Large Eddy Simulations based on the Mori-Zwanzig formalism , 2016, J. Comput. Phys..

[56]  Daniele Venturi,et al.  Data-driven closures for stochastic dynamical systems , 2018, J. Comput. Phys..

[57]  Daniele Venturi,et al.  Faber approximation of the Mori-Zwanzig equation , 2017, J. Comput. Phys..

[58]  Daniele Venturi,et al.  On the estimation of the Mori-Zwanzig memory integral , 2017, Journal of Mathematical Physics.

[59]  Kevin K. Lin,et al.  Data-driven model reduction, Wiener projections, and the Mori-Zwanzig formalism , 2019, ArXiv.

[60]  Jason Frank,et al.  Derivation of delay equation climate models using the Mori-Zwanzig formalism , 2019, Proceedings of the Royal Society A.

[61]  Daniele Venturi,et al.  Generalized Langevin Equations for Systems with Local Interactions , 2019, Journal of Statistical Physics.

[62]  Xingjie Helen Li,et al.  Coarse-Graining of Overdamped Langevin Dynamics via the Mori-Zwanzig Formalism , 2018, Multiscale Model. Simul..

[63]  Daniele Venturi,et al.  Spectral methods for nonlinear functionals and functional differential equations , 2020, Research in the Mathematical Sciences.

[64]  Fei Lu,et al.  Data-driven model reduction, Wiener projections, and the Koopman-Mori-Zwanzig formalism , 2019, J. Comput. Phys..

[65]  Changho Kim,et al.  Generalized second fluctuation-dissipation theorem in the nonequilibrium steady state: Theory and applications , 2021, 2104.05222.