Cosmological Shock Waves in the Large-Scale Structure of the Universe: Nongravitational Effects

Cosmological shock waves result from supersonic flow motions induced by hierarchical clustering of nonlinear structures in the universe. These shocks govern the nature of cosmic plasma through thermalization of gas and acceleration of nonthermal, cosmic-ray (CR) particles. We study the statistics and energetics of shocks formed in cosmological simulations of a concordance ΛCDM universe, with a special emphasis on the effects of nongravitational processes such as radiative cooling, photoionization/heating, and galactic superwind feedbacks. Adopting an improved model for gas thermalization and CR acceleration efficiencies based on nonlinear diffusive shock acceleration calculations, we then estimate the gas thermal energy and the CR energy dissipated at shocks through the history of the universe. Since shocks can serve as sites for generation of vorticity, we also examine the vorticity that should have been generated mostly at curved shocks in cosmological simulations. We find that the dynamics and energetics of shocks are governed primarily by the gravity of matter, so other nongravitational processes do not significantly affect the global energy dissipation and vorticity generation at cosmological shocks. Our results reinforce scenarios in which the intracluster medium and warm-hot intergalactic medium contain energetically significant populations of nonthermal particles and turbulent flow motions.

[1]  R. Cen,et al.  The Protogalactic Origin for Cosmic Magnetic Fields , 1996, astro-ph/9607141.

[2]  A. Bell,et al.  Non-Linear Amplification of a Magnetic Field Driven by Cosmic Ray Streaming , 2000 .

[3]  B. O’Shea,et al.  Cosmological Shocks in Adaptive Mesh Refinement Simulations and the Acceleration of Cosmic Rays , 2008, 0806.1522.

[4]  A. Loeb,et al.  Searching for intergalactic shocks with the Square Kilometer Array , 2004, astro-ph/0407243.

[5]  Cluster Magnetic Fields from Large-Scale Structure and Galaxy Cluster Shocks , 2005, astro-ph/0512079.

[6]  D. Lindley,et al.  High-Energy Astrophysics , 2009, Undergraduate Lecture Notes in Physics.

[7]  J. Giacalone The Efficient Acceleration of Thermal Protons by Perpendicular Shocks , 2005 .

[8]  D. Ryu,et al.  Turbulence and Magnetic Fields in the Large-Scale Structure of the Universe , 2008, Science.

[9]  D. Ryu,et al.  Cosmic-Ray Electrons in Groups and Clusters of Galaxies: Primary and Secondary Populations from a Numerical Cosmological Simulation , 2001, astro-ph/0108305.

[10]  A. Atoyan,et al.  Clusters of galaxies: magnetic fields and nonthermal emission , 1998, astro-ph/9812458.

[11]  T. Jones,et al.  Efficiency of Nonlinear Particle Acceleration at Cosmic Structure Shocks , 2004, astro-ph/0410724.

[12]  S. Gabici,et al.  Nonthermal Radiation from Clusters of Galaxies: The Role of Merger Shocks in Particle Acceleration , 2002, astro-ph/0207523.

[13]  J. Rachen,et al.  CONTRIBUTIONS TO THE COSMIC RAY FLUX ABOVE THE ANKLE : CLUSTERS OF GALAXIES , 1996, astro-ph/9608071.

[14]  P. Kronberg Extragalactic magnetic fields , 1994 .

[15]  A. Finoguenov,et al.  Probing turbulence in the Coma galaxy cluster , 2004, astro-ph/0404132.

[16]  Alexey Vikhlinin,et al.  Shocks and cold fronts in galaxy clusters , 2007, astro-ph/0701821.

[17]  S. Bowyer,et al.  Extreme Ultraviolet Explorer Observations of Clusters of Galaxies: Virgo and M87 , 2000 .

[18]  Abraham Loeb,et al.  Cosmic γ-ray background from structure formation in the intergalactic medium , 2000, Nature.

[19]  G. Giovannini,et al.  Halo and relic sources in clusters of galaxies , 2000, astro-ph/0008342.

[20]  J Korea,et al.  Cosmological Shock Waves and Their Role in the Large-Scale Structure of the Universe , 2003, astro-ph/0305164.

[21]  Jeremiah P. Ostriker,et al.  A Cosmological Hydrodynamic Code Based on the Total Variation Diminishing Scheme , 1993 .

[22]  T. Ensslin,et al.  Simulating cosmic rays in clusters of galaxies – I. Effects on the Sunyaev–Zel'dovich effect and the X-ray emission , 2006, astro-ph/0611037.

[23]  C. Sarazin The Energy Spectrum of Primary Cosmic-Ray Electrons in Clusters of Galaxies and Inverse Compton Emission , 1999, astro-ph/9901061.

[24]  Hyesung Kang ACCELERATION OF COSMIC RAYS AT COSMIC SHOCKS , 2003, astro-ph/0303404.

[25]  G. Matt,et al.  Hard X-Ray Radiation in the Coma Cluster Spectrum , 1999, astro-ph/9901018.

[26]  L. Drury,et al.  Nonlinear theory of diffusive acceleration of particles by shock waves , 2001 .

[27]  Roger D. Blandford,et al.  Particle acceleration at astrophysical shocks: A theory of cosmic ray origin , 1987 .

[28]  D. Ryu,et al.  Cluster accretion shocks as possible acceleration sites for ultra-high-energy protons below the greisen cutoff , 1995, astro-ph/9507113.

[29]  K. Subramanian,et al.  Evolving turbulence and magnetic fields in galaxy clusters , 2005, astro-ph/0505144.

[30]  J. Jokipii Rate of energy gain and maximum energy in diffusive shock acceleration , 1987 .

[31]  A. Bell The acceleration of cosmic rays in shock fronts – I , 1978 .

[32]  Eck,et al.  Revised equipartition and minimum energy formula for magnetic field strength estimates from radio synchrotron observations , 2005, astro-ph/0507367.

[33]  T. Ensslin,et al.  Detecting shock waves in cosmological smoothed particle hydrodynamics simulations , 2006, astro-ph/0603483.

[34]  C. Sarazin,et al.  Nonthermal Emissions from Particles Accelerated by Turbulence in Clusters of Galaxies , 2002, astro-ph/0210320.

[35]  K. Dolag,et al.  Magnetic fields and Faraday rotation in clusters of galaxies , 2004, astro-ph/0406225.

[36]  M. Petitjean The abundances of nitrogen and oxygen in damped lyman alpha systems , 2002, astro-ph/0205472.

[37]  D. Ellison,et al.  The Influence of Particle Scattering on Acceleration Rates and Injection Efficiencies in Oblique Shocks , 1995, astro-ph/9506076.

[38]  D. Ryu,et al.  Cosmic-Ray Protons Accelerated at Cosmological Shocks and Their Impact on Groups and Clusters of Galaxies , 2001, astro-ph/0105465.

[39]  R. Cen,et al.  Where Are the Baryons? II. Feedback Effects , 2005, astro-ph/0601008.

[40]  E. Berezhko,et al.  Efficiency of CR acceleration in supernova remnants , 1995 .

[41]  S. Bowyer,et al.  Extreme-Ultraviolet Emission in Abell 1795, Abell 2199, and the Coma Cluster , 1999, astro-ph/9911001.

[42]  L. Widrow,et al.  A Possible Mechanism for Generating Galactic Magnetic Fields , 2000 .

[43]  J. Prochaska,et al.  Metallicity Evolution of Damped Lyα Systems in ΛCDM Cosmology , 2002, astro-ph/0203524.

[44]  G. Lapenta,et al.  Modeling the Large-Scale Structures of Astrophysical Jets in the Magnetically Dominated Limit , 2006, astro-ph/0604469.

[45]  C. Gheller,et al.  Shock waves in Eulerian cosmological simulations: main properties and acceleration of cosmic rays , 2008, 0808.0609.

[46]  T. Ensslin,et al.  A Bayesian view on Faraday rotation maps - Seeing the magnetic power spectra in galaxy clusters , 2005, astro-ph/0501211.

[47]  T. Clarke Faraday rotation observations of magnetic fields in galaxy clusters , 2004, astro-ph/0412268.

[48]  M. Pohl,et al.  EGRET Upper Limits on the High-Energy Gamma-Ray Emission of Galaxy Clusters , 2003, astro-ph/0301362.

[49]  Jeremiah P. Ostriker,et al.  Particle Acceleration by Astrophysical Shocks , 1978 .

[50]  S. Schwartz,et al.  Hybrid simulations of protons strongly accelerated by a parallel collisionless shock , 1992 .

[51]  J. Binney Galaxy formation without primordial turbulence. Mechanisms for generating cosmic vorticity , 1974 .

[52]  E. S. Weibel,et al.  Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution , 1959 .

[53]  D. Ryu,et al.  SELF-SIMILAR EVOLUTION OF COSMIC-RAY MODIFIED SHOCKS: THE COSMIC-RAY SPECTRUM , 2009, 0901.1702.

[54]  T. Jones,et al.  Self-Similar Evolution of Cosmic-Ray-Modified Quasi-Parallel Plane Shocks , 2007, 0705.3274.

[55]  Haiyang Li,et al.  Giant Radio Galaxies and Cosmic-Ray Acceleration , 2004 .

[56]  U. Toronto,et al.  A New Radio-X-Ray Probe of Galaxy Cluster Magnetic Fields , 2000, astro-ph/0011281.

[57]  M. O. Siemieniec-Ozieblo Cosmic ray acceleration at supergalactic accretion shocks: a new upper energy limit due to a finite shock extension , 2002, astro-ph/0203103.