Predictive Models for Integrating Clinical and Genomic Data

[1]  M. Zweig,et al.  Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. , 1993, Clinical chemistry.

[2]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[3]  Stephen V. Stehman,et al.  Selecting and interpreting measures of thematic classification accuracy , 1997 .

[4]  Igor Kononenko,et al.  Inductive and Bayesian learning in medical diagnosis , 1993, Appl. Artif. Intell..

[5]  M. Degroot Optimal Statistical Decisions , 1970 .

[6]  F. Harrell,et al.  Development of a clinical prediction model for an ordinal outcome: the World Health Organization Multicentre Study of Clinical Signs and Etiological agents of Pneumonia, Sepsis and Meningitis in Young Infants. WHO/ARI Young Infant Multicentre Study Group. , 1998, Statistics in medicine.

[7]  J. Engel Polytomous logistic regression , 1988 .

[8]  J. Torrie,et al.  Principles and Procedures of Statistics with Special Reference to the Biological Sciences , 1962 .

[9]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[10]  Hamid R. Tizhoosh,et al.  A Reinforcement Learning Framework for Medical Image Segmentation , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[11]  Bernhard Schölkopf,et al.  Comparing support vector machines with Gaussian kernels to radial basis function classifiers , 1997, IEEE Trans. Signal Process..

[12]  M G M Hunink,et al.  The effect of treatment on health-related quality of life in patients with hypertension and renal artery stenosis , 2005, Journal of Human Hypertension.

[13]  R. Tibshirani,et al.  Generalized additive models for medical research , 1986, Statistical methods in medical research.

[14]  R. Fletcher,et al.  Clinical Epidemiology: The Essentials , 1982 .

[15]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[16]  Jinbo Bi,et al.  Computer Aided Detection of Pulmonary Embolism with Tobogganing and Mutiple Instance Classification in CT Pulmonary Angiography , 2007, IPMI.

[17]  W. Sell,et al.  Practical Experiences , 1994, Proceedings Thirteenth IEEE Symposium on Mass Storage Systems. Toward Distributed Storage and Data Management Systems.

[18]  D. Altman,et al.  Statistics Notes: Diagnostic tests 1: sensitivity and specificity , 1994 .

[19]  M. Pencina,et al.  Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation , 2004, Statistics in medicine.

[20]  M. Kosorok,et al.  Reinforcement learning design for cancer clinical trials , 2009, Statistics in medicine.

[21]  M. LeBlanc,et al.  Relative risk trees for censored survival data. , 1992, Biometrics.

[22]  R. Brant Assessing proportionality in the proportional odds model for ordinal logistic regression. , 1990, Biometrics.

[23]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[24]  F. Harrell,et al.  Regression modelling strategies for improved prognostic prediction. , 1984, Statistics in medicine.

[25]  M. Gonen,et al.  Concordance probability and discriminatory power in proportional hazards regression , 2005 .

[26]  M. Aspinall,et al.  Use of a Decision Tree to Improve Accuracy of Diagnosis , 1979, Nursing research.

[27]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[28]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[29]  W. Brass,et al.  Basic Statistics: A Primer for the Biomedical Sciences. , 1962 .

[30]  Mark R. Segal,et al.  Regression Trees for Censored Data , 1988 .

[31]  Jieping Ye,et al.  Sparse methods for biomedical data , 2012, SKDD.

[32]  T Shinozaki,et al.  Intensive care unit prognostic scoring systems to predict death: a cost-effectiveness analysis. , 1998, Critical care medicine.

[33]  Paulo J. G. Lisboa,et al.  A review of evidence of health benefit from artificial neural networks in medical intervention , 2002, Neural Networks.

[34]  Torsten Hothorn,et al.  Bagging survival trees , 2002, Statistics in medicine.

[35]  Peter D. Turney Types of Cost in Inductive Concept Learning , 2002, ArXiv.

[36]  Richard Williams GOLOGIT29: Stata module to estimate generalized logistic regression models for ordinal dependent variables , 2014 .

[37]  Bertil Magnusson,et al.  Understanding the meaning of accuracy, trueness and precision , 2007 .

[38]  O. Aalen Nonparametric Inference for a Family of Counting Processes , 1978 .

[39]  G. Brier VERIFICATION OF FORECASTS EXPRESSED IN TERMS OF PROBABILITY , 1950 .

[40]  A. Ciampi,et al.  Stratification by stepwise regression, correspondence analysis and recursive partition: A comparison of three methods of analysis for survival data with covaria , 1986 .

[41]  Ronald M. Summers,et al.  Combining Statistical and Geometric Features for Colonic Polyp Detection in Ctc Based on Multiple Kernel Learning , 2010, Int. J. Comput. Intell. Appl..

[42]  Hyung Jun Cho,et al.  Median Regression Tree for Analysis of Censored Survival Data , 2008, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[43]  Vijay K. Jain,et al.  Markov random field for tumor detection in digital mammography , 1995, IEEE Trans. Medical Imaging.

[44]  Ronald M. Summers,et al.  Machine learning and radiology , 2012, Medical Image Anal..

[45]  Charles Elkan,et al.  The Foundations of Cost-Sensitive Learning , 2001, IJCAI.

[46]  F. Windmeijer,et al.  An R-squared measure of goodness of fit for some common nonlinear regression models , 1997 .

[47]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[48]  Charles Wang,et al.  Multi-class tumor classification by discriminant partial least squares using microarray gene expression data and assessment of classification models , 2004, Comput. Biol. Chem..

[49]  A Whitehead,et al.  Meta‐analysis of ordinal outcomes using individual patient data , 2001, Statistics in medicine.

[50]  P. Heagerty,et al.  Survival Model Predictive Accuracy and ROC Curves , 2005, Biometrics.

[51]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[52]  S. Goldfeld,et al.  Maximization by Quadratic Hill-Climbing , 1966 .

[53]  E Marubini,et al.  Analysing Survival Data from Clinical Trials and Observational Studies; E. Marubini & M. G. Valsecchi Published by John Wiley & Sons 414 pages ISBN 0-971-93987-0. , 1995, British journal of clinical pharmacology.

[54]  Rupert G. Miller,et al.  Survival Analysis , 2022, The SAGE Encyclopedia of Research Design.

[55]  Sunil Vadera,et al.  A survey of cost-sensitive decision tree induction algorithms , 2013, CSUR.

[56]  Nathalie Japkowicz,et al.  The class imbalance problem: A systematic study , 2002, Intell. Data Anal..

[57]  Donald Michie,et al.  Expert systems in the micro-electronic age , 1979 .

[58]  F. Ederer,et al.  Maximum utilization of the life table method in analyzing survival. , 1958, Journal of chronic diseases.

[59]  J. Hanley,et al.  The meaning and use of the area under a receiver operating characteristic (ROC) curve. , 1982, Radiology.

[60]  R. Tibshirani The lasso method for variable selection in the Cox model. , 1997, Statistics in medicine.

[61]  G. Lamas,et al.  Atrial High Rate Episodes Detected by Pacemaker Diagnostics Predict Death and Stroke: Report of the Atrial Diagnostics Ancillary Study of the MOde Selection Trial (MOST) , 2003, Circulation.

[62]  Lucila Ohno-Machado,et al.  Logistic regression and artificial neural network classification models: a methodology review , 2002, J. Biomed. Informatics.

[63]  J. Friedman,et al.  Estimating Optimal Transformations for Multiple Regression and Correlation. , 1985 .

[64]  R B Davis,et al.  Exponential survival trees. , 1989, Statistics in medicine.

[65]  Bhanukiran Vinzamuri,et al.  Cox Regression with Correlation Based Regularization for Electronic Health Records , 2013, 2013 IEEE 13th International Conference on Data Mining.

[66]  H. Putter,et al.  Dynamic Prediction in Clinical Survival Analysis , 2011 .

[67]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[68]  Antonio Ciampi,et al.  Recursive Partition: A Versatile Method for Exploratory-Data Analysis in Biostatistics , 1987 .

[69]  Narayan Ganesan,et al.  Application of Neural Networks in Diagnosing Cancer Disease using Demographic Data , 2010 .

[70]  C B Begg,et al.  Methodology for the Differential Diagnosis of a Complex Data Set , 1983, Medical decision making : an international journal of the Society for Medical Decision Making.

[71]  R. Olshen,et al.  Tree-structured survival analysis. , 1985, Cancer treatment reports.

[72]  Hemant Ishwaran,et al.  Random Survival Forests , 2008, Wiley StatsRef: Statistics Reference Online.

[73]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[74]  Lawrence Carin,et al.  Sparse multinomial logistic regression: fast algorithms and generalization bounds , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[75]  R B D'Agostino,et al.  A comparison of logistic regression to decision-tree induction in a medical domain. , 1993, Computers and biomedical research, an international journal.

[76]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[77]  Yvonne Vergouwe,et al.  Anticipated Costs of Hospitalization for Respiratory Syncytial Virus Infection in Young Children at Risk , 2004, The Pediatric infectious disease journal.

[78]  John P. Klein,et al.  Survival Analysis, Software , 2005 .

[79]  James F. Watkins,et al.  Analysing Survival Data from Clinical Trials and Observational Studies. , 1995 .

[80]  Vipin Kumar,et al.  Introduction to Data Mining , 2022, Data Mining and Machine Learning Applications.

[81]  L. Bottaci,et al.  Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions , 1997, The Lancet.

[82]  Wayne Nelson Theory and applications of hazard plotting for censored failure data , 2000 .

[83]  E. Gehan A GENERALIZED WILCOXON TEST FOR COMPARING ARBITRARILY SINGLY-CENSORED SAMPLES. , 1965, Biometrika.

[84]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[85]  J. Peto,et al.  Asymptotically Efficient Rank Invariant Test Procedures , 1972 .

[86]  M. Pepe The Statistical Evaluation of Medical Tests for Classification and Prediction , 2003 .

[87]  W. Haenszel,et al.  Statistical aspects of the analysis of data from retrospective studies of disease. , 1959, Journal of the National Cancer Institute.

[88]  Charu C. Aggarwal,et al.  Healthcare Data Analytics , 2015 .

[89]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[90]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[91]  Vladimir Vapnik,et al.  The Nature of Statistical Learning , 1995 .

[92]  B. Weinshenker,et al.  Revised diagnostic criteria for neuromyelitis optica , 2006, Neurology.

[93]  A Ziegler,et al.  EDITOR Comments on ‘Practical experiences on the necessity of external validation’ , 2008 .

[94]  Ron Kikinis,et al.  Markov random field segmentation of brain MR images , 1997, IEEE Transactions on Medical Imaging.

[95]  S S Gambhir,et al.  Decision tree sensitivity analysis for cost-effectiveness of FDG-PET in the staging and management of non-small-cell lung carcinoma. , 1997, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[96]  D. Pregibon Logistic Regression Diagnostics , 1981 .

[97]  Jacek M. Zurada,et al.  Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance , 2008, Neural Networks.

[98]  D. Cox Regression Models and Life-Tables , 1972 .

[99]  Nathan Mantel,et al.  Chi-square tests with one degree of freedom , 1963 .

[100]  Paulo J. G. Lisboa,et al.  The Use of Artificial Neural Networks in Decision Support in Cancer: a Systematic Review , 2005 .

[101]  P. J. Verweij,et al.  Penalized likelihood in Cox regression. , 1994, Statistics in medicine.

[102]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[103]  Richard Williams Generalized Ordered Logit/Partial Proportional Odds Models for Ordinal Dependent Variables , 2006 .

[104]  Pedro M. Domingos MetaCost: a general method for making classifiers cost-sensitive , 1999, KDD '99.

[105]  Thomas G. Dietterich,et al.  Solving the Multiple Instance Problem with Axis-Parallel Rectangles , 1997, Artif. Intell..

[106]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[107]  Trevor Hastie,et al.  Linear Methods for Regression , 2001 .

[108]  Masoom A. Haider,et al.  Prostate Cancer Localization With Multispectral MRI Using Cost-Sensitive Support Vector Machines and Conditional Random Fields , 2010, IEEE Transactions on Image Processing.

[109]  F. Harrell,et al.  Evaluating the yield of medical tests. , 1982, JAMA.

[110]  A Ciampi,et al.  An approach to classifying prognostic factors related to survival experience for non‐Hodgkin's lymphoma patients: Based on a series of 982 patients: 1967–1975 , 1981, Cancer.

[111]  Li M Fu,et al.  Multi‐class cancer subtype classification based on gene expression signatures with reliability analysis , 2004, FEBS letters.

[112]  G. V. Kass An Exploratory Technique for Investigating Large Quantities of Categorical Data , 1980 .

[113]  E. Kaplan,et al.  Nonparametric Estimation from Incomplete Observations , 1958 .

[114]  Murat Dundar,et al.  Multiple Instance Learning for Computer Aided Diagnosis , 2006, NIPS.

[115]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[116]  William O'Donohue,et al.  Predicting future healthcare costs: how well does risk-adjustment work? , 2006, Journal of health organization and management.

[117]  Robert C. Holte,et al.  Exploiting the Cost (In)sensitivity of Decision Tree Splitting Criteria , 2000, ICML.

[118]  D. Bamber The area above the ordinal dominance graph and the area below the receiver operating characteristic graph , 1975 .

[119]  Trevor Hastie,et al.  Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent. , 2011, Journal of statistical software.

[120]  S. Wood Generalized Additive Models: An Introduction with R , 2006 .

[121]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[122]  Jacques Ferlay,et al.  GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 11 [Internet] , 2013 .

[123]  Johan A. K. Suykens,et al.  L2-norm multiple kernel learning and its application to biomedical data fusion , 2010, BMC Bioinformatics.