Image processing methods to compensate for IFOV errors in microgrid imaging polarimeters

Long-wave infrared imaging Stokes vector polarimeters are used in many remote sensing applications. Imaging polarimeters require that several measurements be made under optically different conditions in order to estimate the polarization signature at a given scene point. This multiple-measurement requirement introduces error in the signature estimates, and the errors differ depending upon the type of measurement scheme used. Here, we investigate a LWIR linear microgrid polarimeter. This type of instrument consists of a mosaic of micropolarizers at different orientations that are masked directly onto a focal plane array sensor. In this scheme, each polarization measurement is acquired spatially and hence each is made at a different point in the scene. This is a significant source of error, as it violates the requirement that each polarization measurement have the same instantaneous field-of-view (IFOV). In this paper, we first study the amount of error introduced by the IFOV handicap in microgrid instruments. We then proceed to investigate means for mitigating the effects of these errors to improve the quality of polarimetric imagery. In particular, we examine different interpolation schemes and gauge their performance. These studies are completed through the use of both real instrumental and modeled data.