Isolation and characterization of arsenic-binding siderophores from Rhodococcus erythropolis S43: role of heterobactin B and other heterobactin variants

[1]  D. Tischler,et al.  Metal binding ability of microbial natural metal chelators and potential applications. , 2020, Natural product reports.

[2]  J. Bandow,et al.  Bacterial Metabolites Produced Under Iron Limitation Kill Pinewood Nematode and Attract Caenorhabditis elegans , 2019, Front. Microbiol..

[3]  K. Szymanska,et al.  Analysis of desferrioxamine-like siderophores and their capability to selectively bind metals and metalloids: development of a robust analytical RP-HPLC method. , 2018, Research in microbiology.

[4]  R. Chávez,et al.  Detection of arsenic-binding siderophores in arsenic-tolerating Actinobacteria by a modified CAS assay. , 2018, Ecotoxicology and environmental safety.

[5]  Arwa Al-Dilaimi,et al.  The secreted metabolome of Streptomyces chartreusis and implications for bacterial chemistry , 2018, Proceedings of the National Academy of Sciences.

[6]  Kai Blin,et al.  antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification , 2017, Nucleic Acids Res..

[7]  Kristian Fog Nielsen,et al.  Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking , 2016, Nature Biotechnology.

[8]  Emma L. Schymanski,et al.  MetFrag relaunched: incorporating strategies beyond in silico fragmentation , 2016, Journal of Cheminformatics.

[9]  L. Ma,et al.  Bacterial ability in AsIII oxidation and AsV reduction: Relation to arsenic tolerance, P uptake, and siderophore production. , 2015, Chemosphere.

[10]  A. Butler,et al.  Acyl peptidic siderophores: structures, biosyntheses and post-assembly modifications , 2015, BioMetals.

[11]  Elizabeth M. Nolan,et al.  Beyond iron: non-classical biological functions of bacterial siderophores. , 2015, Dalton transactions.

[12]  M. Marahiel,et al.  Structural characterization of the heterobactin siderophores from Rhodococcus erythropolis PR4 and elucidation of their biosynthetic machinery. , 2013, Journal of natural products.

[13]  M. Schlömann,et al.  New clusters of arsenite oxidase and unusual bacterial groups in enrichments from arsenic-contaminated soil , 2012, Archives of Microbiology.

[14]  I. Schalk,et al.  New roles for bacterial siderophores in metal transport and tolerance. , 2011, Environmental microbiology.

[15]  R. Bergeron,et al.  Synthesis of Heterobactins A and B and Nocardia Heterobactin. , 2011, Tetrahedron.

[16]  M. Valko,et al.  Arsenic: toxicity, oxidative stress and human disease , 2011, Journal of applied toxicology : JAT.

[17]  I. Schalk,et al.  Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance. , 2010, Environmental microbiology reports.

[18]  E. Kothe,et al.  Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively , 2009, Journal of applied microbiology.

[19]  K. Shin‐ya,et al.  Novel siderophore, JBIR-16, isolated from Nocardia tenerifensis NBRC 101015 , 2009, The Journal of Antibiotics.

[20]  T. Lebeau,et al.  New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway. , 2009, Environmental microbiology.

[21]  F. Morel,et al.  Role of the siderophore azotobactin in the bacterial acquisition of nitrogenase metal cofactors. , 2009, Environmental science & technology.

[22]  I. Schalk,et al.  The Pseudomonas aeruginosa Pyochelin-Iron Uptake Pathway and Its Metal Specificity , 2009, Journal of bacteriology.

[23]  C. Steinmaus,et al.  Increased lung cancer risks are similar whether arsenic is ingested or inhaled , 2009, Journal of Exposure Science and Environmental Epidemiology.

[24]  A. Skłodowska,et al.  Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution. , 2008, Environmental pollution.

[25]  E. Kothe,et al.  Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. , 2008, Canadian journal of microbiology.

[26]  M. Marahiel,et al.  Siderophore-Based Iron Acquisition and Pathogen Control , 2007, Microbiology and Molecular Biology Reviews.

[27]  M. Bates,et al.  Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. , 2007, Journal of the National Cancer Institute.

[28]  A. Juwarkar,et al.  Production and Characterization of Siderophores and its Application in Arsenic Removal from Contaminated Soil , 2007 .

[29]  S. Kraemer,et al.  Iron oxide dissolution and solubility in the presence of siderophores , 2004, Aquatic Sciences.

[30]  G. Robson,et al.  Fungal siderophores: structures, functions and applications , 2002 .

[31]  Kazuo T. Suzuki,et al.  Arsenic round the world: a review. , 2002, Talanta.

[32]  C. Carrano,et al.  Heterobactins: A new class of siderophores from Rhodococcus erythropolis IGTS8 containing both hydroxamate and catecholate donor groups , 2001, Biometals.

[33]  D. Zuberer,et al.  Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria , 1991, Biology and Fertility of Soils.

[34]  J. Neilands,et al.  Universal chemical assay for the detection and determination of siderophores. , 1987, Analytical biochemistry.