A Canonical Locally Named Representation of Binding

This paper is about completely formal representation of languages with binding. We have previously written about a representation following an approach going back to Frege, based on first-order syntax using distinct syntactic classes for locally bound variables vs. global or free variables (Sato and Pollack, J Symb Comput 45:598–616, 2010). The present paper differs from our previous work by being more abstract. Whereas we previously gave a particular concrete function for canonically choosing the names of binders, here we characterize abstractly the properties required of such a choice function to guarantee canonical representation, and focus on the metatheory of the representation, proving that it is in substitution preserving isomorphism with the nominal Isabelle representation of pure lambda terms. This metatheory is formalized in Isabelle/HOL. The final section outlines a formalization in Matita of a challenging language with multiple binding and simultaneous substitution. The Isabelle and Matita proof files are available online.

[1]  R. Pollack,et al.  Strong Induction Principles in the Locally Nameless Representation of Binders ( Preliminary Notes ) , 2007 .

[2]  J. M. Dunn,et al.  Truth or consequences : essays in honor of Nuel Belnap , 1993 .

[3]  James McKinna,et al.  Some Lambda Calculus and Type Theory Formalized , 1997, Journal of Automated Reasoning.

[4]  Gottlob Frege,et al.  Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens , 1879 .

[5]  J. Ferreirós From Frege to Gödel. A Source Book in Mathematical Logic, 1879¿1931: By Jean van Heijenoort. Cambridge, MA (Harvard University Press). 1967; new paperback edn., 2002. 664 pages, 1 halftone. ISBN: 0-674-32449-8. $27.95 , 2004 .

[6]  Robert Harper,et al.  Mechanizing metatheory in a logical framework , 2007, Journal of Functional Programming.

[7]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[8]  R. Pollack The Theory of LEGO A Proof Checker for the Extended Calculus of Constructions , 1994 .

[9]  Andrew D. Gordon,et al.  A Mechanisation of Name-Carrying Syntax up to Alpha-Conversion , 1993, HUG.

[10]  G. Pottinger,et al.  A Tour of the Multivariate Lambda Calculus , 1990 .

[11]  M. E. Szabo,et al.  The collected papers of Gerhard Gentzen , 1969 .

[12]  Jim Alves-Foss,et al.  Higher Order Logic Theorem Proving and its Applications 8th International Workshop, Aspen Grove, Ut, Usa, September 11-14, 1995 : Proceedings , 1995 .

[13]  Randy Pollack,et al.  External an internal syntax of the ?-calculus , 2010 .

[14]  Andrew M. Pitts,et al.  Nominal Logic: A First Order Theory of Names and Binding , 2001, TACS.

[15]  Furio Honsell,et al.  A framework for defining logics , 1993, JACM.

[16]  Arthur Charguéraud,et al.  Engineering formal metatheory , 2008, POPL '08.

[17]  J. Heijenoort From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .

[18]  Christian Urban,et al.  Nominal Techniques in Isabelle/HOL , 2005, Journal of Automated Reasoning.

[19]  Andrew D. Gordon,et al.  Five Axioms of Alpha-Conversion , 1996, TPHOLs.

[20]  Roy L. Crole,et al.  A definitional approach to primitivexs recursion over higher order abstract syntax , 2003, MERLIN '03.

[21]  Frank Pfenning,et al.  System Description: Twelf - A Meta-Logical Framework for Deductive Systems , 1999, CADE.

[22]  Joachim Parrow,et al.  Psi-calculi in Isabelle , 2009, TPHOLs.

[23]  de Ng Dick Bruijn,et al.  Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .

[24]  James McKinna,et al.  Pure Type Systems Formalized , 1993, TLCA.

[25]  Alley Stoughton,et al.  Substitution Revisited , 1988, Theor. Comput. Sci..

[26]  Christian Urban,et al.  Nominal Inversion Principles , 2008, TPHOLs.

[27]  William C. Frederick,et al.  A Combinatory Logic , 1995 .

[28]  D. Prawitz Natural Deduction: A Proof-Theoretical Study , 1965 .

[29]  Jeffrey D. Ullman,et al.  The Theory of Functional and Template Dependencies , 1982, Theor. Comput. Sci..

[30]  Michael Norrish,et al.  Barendregt's Variable Convention in Rule Inductions , 2007, CADE.

[31]  Furio Honsell,et al.  The Theory of Contexts for First Order and Higher Order Abstract Syntax , 2002, TOSCA.

[32]  Andrew M. Pitts,et al.  A new approach to abstract syntax involving binders , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[33]  Haskell B. Curry,et al.  Combinatory Logic, Volume I , 1959 .