Fast Rescheduling of Multiple Workflows to Constrained Heterogeneous Resources Using Multi-Criteria Memetic Computing

This paper is motivated by, but not limited to, the task of scheduling jobs organized in workflows to a computational grid. Due to the dynamic nature of grid computing, more or less permanent replanning is required so that only very limited time is available to come up with a revised plan. To meet the requirements of both users and resource owners, a multi-objective optimization comprising execution time and costs is needed. This paper summarizes our work over the last six years in this field, and reports new results obtained by the combination of heuristics and evolutionary search in an adaptive Memetic Algorithm. We will show how different heuristics contribute to solving varying replanning scenarios and investigate the question of the maximum manageable work load for a grid of growing size starting with a load of 200 jobs and 20 resources up to 7000 jobs and 700 resources. Furthermore, the effect of four different local searchers incorporated into the evolutionary search is studied. We will also report briefly on approaches that failed within the short time frame given for planning.

[1]  Lawrence Davis,et al.  Shall We Repair? Genetic AlgorithmsCombinatorial Optimizationand Feasibility Constraints , 1993, ICGA.

[2]  Natalio Krasnogor,et al.  A study on the design issues of Memetic Algorithm , 2007, 2007 IEEE Congress on Evolutionary Computation.

[3]  Wilfried Jakob,et al.  Fast Multi-objective Rescheduling of Workflows to Constrained Resources Using Heuristics and Memetic Evolution , 2010, Scalable Comput. Pract. Exp..

[4]  Martina Gorges-Schleuter,et al.  Explicit Parallelism of Genetic Algorithms through Population Structures , 1990, PPSN.

[5]  Wilfried Jakob,et al.  HyGLEAM: Hybrid general purpose evolutionary algorithm and method , 2001 .

[6]  James Smith,et al.  A tutorial for competent memetic algorithms: model, taxonomy, and design issues , 2005, IEEE Transactions on Evolutionary Computation.

[7]  Natalio Krasnogor,et al.  Adaptive Cellular Memetic Algorithms , 2009, Evolutionary Computation.

[8]  Ruhul A. Sarker,et al.  Memetic algorithms for solving job-shop scheduling problems , 2009, Memetic Comput..

[9]  L. Darrell Whitley,et al.  Lamarckian Evolution, The Baldwin Effect and Function Optimization , 1994, PPSN.

[10]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[11]  Martina Gorges-Schleuter,et al.  Genetic algorithms and population structures: a massively parallel algorithm , 1991 .

[12]  Peter Brucker,et al.  Complex Scheduling , 2006 .

[13]  Wilfried Jakob,et al.  Solving Scheduling Problems in Grid Resource Management Using an Evolutionary Algorithm , 2006, OTM Conferences.

[14]  Ian T. Foster,et al.  The anatomy of the grid: enabling scalable virtual organizations , 2001, Proceedings First IEEE/ACM International Symposium on Cluster Computing and the Grid.

[15]  Marios D. Dikaiakos,et al.  Scheduling Workflows with Budget Constraints , 2007, Grid 2007.

[16]  Martina Gorges-Schleuter A Comparative Study of Global and Local Selection in Evolution Strategies , 1998, PPSN.

[17]  P. Simin Pulat,et al.  The shifting bottleneck procedure for job-shops with parallel machines , 2006 .

[18]  Wilfried Jakob,et al.  Tackling the Grid Job Planning and Resource Allocation Problem Using a Hybrid Evolutionary Algorithm , 2007, PPAM.

[19]  Christoph J. Schuster No-wait Job-Shop Scheduling: Komplexität und Local Search , 2003 .

[20]  Jarek Nabrzyski,et al.  A multicriteria approach to two-level hierarchy scheduling in grids , 2008, J. Sched..

[21]  Wilfried Jakob,et al.  Fast Multi-objective Scheduling of Jobs to Constrained Resources Using a Hybrid Evolutionary Algorithm , 2008, PPSN.

[22]  Grzegorz Waligóra,et al.  Modelling and solving grid resource allocation problem with network resources for workflow applications , 2011, J. Sched..

[23]  L. Goddard,et al.  Operations Research (OR) , 2007 .

[24]  Radu Prodan,et al.  Taxonomies of the Multi-Criteria Grid Workflow Scheduling Problem , 2008 .

[25]  Pierre-François Dutot,et al.  Bi-criteria algorithm for scheduling jobs on cluster platforms , 2004, SPAA '04.

[26]  Uwe Schwiegelshohn,et al.  On-line hierarchical job scheduling on grids with admissible allocation , 2010, J. Sched..

[27]  Ian T. Foster,et al.  The Anatomy of the Grid: Enabling Scalable Virtual Organizations , 2001, Int. J. High Perform. Comput. Appl..

[28]  Andy J. Keane,et al.  Meta-Lamarckian learning in memetic algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[29]  Colin R. Reeves,et al.  Evolutionary computation: a unified approach , 2007, Genetic Programming and Evolvable Machines.

[30]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[31]  Nostrand Reinhold,et al.  the utility of using the genetic algorithm approach on the problem of Davis, L. (1991), Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York. , 1991 .

[32]  Christian Blume,et al.  GLEAM - General Learning Evolutionary Algorithm and Method : ein Evolutionärer Algorithmus und seine Anwendungen , 2009 .

[33]  Wilfried Jakob,et al.  Optimised Scheduling of Grid Resources Using Hybrid Evolutionary Algorithms , 2005, PPAM.

[34]  Christian Blume,et al.  Towards a Generally Applicable Self-Adapting Hybridization of Evolutionary Algorithms , 2004, GECCO.

[35]  David B. Fogel,et al.  An Introduction to Evolutionary Computation , 2022 .

[36]  Türkay Dereli,et al.  MULTIPLE DISPATCHING RULE BASED HEURISTIC FOR MULTI-OBJECTIVE SCHEDULING OF JOB SHOPS USING TABU SEARCH , 2002 .

[37]  Anne Setämaa-Kärkkäinen,et al.  Best compromise solution for a new multiobjective scheduling problem , 2006, Comput. Oper. Res..

[38]  W. Hart Adaptive global optimization with local search , 1994 .

[39]  P. Gács,et al.  Algorithms , 1992 .

[40]  Wilfried Jakob,et al.  Fast Multi-objective Reschulding of Grid Jobs by Heuristics and Evolution , 2009, PPAM.

[41]  Hironori Kasahara,et al.  A standard task graph set for fair evaluation of multiprocessor scheduling algorithms , 2002 .

[42]  Jan Weglarz,et al.  Multicriteria, multi-user scheduling in grids with advance reservation , 2010, J. Sched..

[43]  Christian Bierwirth,et al.  On Permutation Representations for Scheduling Problems , 1996, PPSN.

[44]  Bernabé Dorronsoro,et al.  Cellular Memetic Algorithms , 2005 .

[45]  Edmund K. Burke,et al.  Multimeme Algorithms for Protein Structure Prediction , 2002, PPSN.

[46]  Ivor W. Tsang,et al.  An evolutionary search paradigm that learns with past experiences , 2012, 2012 IEEE Congress on Evolutionary Computation.

[47]  Kay Chen Tan,et al.  A Multi-Facet Survey on Memetic Computation , 2011, IEEE Transactions on Evolutionary Computation.

[48]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[49]  Yew-Soon Ong,et al.  A Conceptual Modeling of Meme Complexes in Stochastic Search , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[50]  Jarek Nabrzyski,et al.  Scheduling Jobs on the Grid – Multicriteria Approach , 2006 .

[51]  R. Buyya,et al.  A budget constrained scheduling of workflow applications on utility Grids using genetic algorithms , 2006, 2006 Workshop on Workflows in Support of Large-Scale Science.

[52]  Wilfried Jakob,et al.  A general cost-benefit-based adaptation framework for multimeme algorithms , 2010, Memetic Comput..

[53]  Wilfried Jakob,et al.  New parameters for the evaluation of benchmarks for fast evolutionary scheduling of workflows. , 2012 .

[54]  W. Schiffmann,et al.  A COMPREHENSIVE TEST BENCH FOR THE EVALUATION OF SCHEDULING HEURISTICS , 2004 .

[55]  Enrique Alba,et al.  Efficient Batch Job Scheduling in Grids using Cellular Memetic Algorithms , 2007, IPDPS.

[56]  C. Blume,et al.  Automatic generation of collision free moves for the ABB industrial robot control , 1997, Proceedings of 1st International Conference on Conventional and Knowledge Based Intelligent Electronic Systems. KES '97.

[57]  Wilfried Jakob,et al.  Hybrid GeneraL purpose Evolutionary Algorithm and Method , 2001 .

[58]  Martina Gorges-Schleuter,et al.  Application of Genetic Algorithms to Task Planning and Learning , 1992, Parallel Problem Solving from Nature.

[59]  Fatos Xhafa,et al.  Meta-heuristics for Grid Scheduling Problems , 2008 .

[60]  Guohui Zhang Investigating Memetic Algorithm for Solving the Job Shop Scheduling Problems , 2010, 2010 International Conference on Artificial Intelligence and Computational Intelligence.

[61]  Wilfried Jakob,et al.  Construction of Benchmarks for Comparison of Grid Resource Planning Algorithms , 2018, ICSOFT.

[62]  D. Atkin OR scheduling algorithms. , 2000, Anesthesiology.

[63]  Wilfried Jakob,et al.  An Assessment of Heuristics for Fast Scheduling of Grid Jobs , 2010, ICSOFT.

[64]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[65]  Kenneth A. De Jong,et al.  An Analysis of the Effects of Neighborhood Size and Shape on Local Selection Algorithms , 1996, PPSN.

[66]  Radu Prodan,et al.  Comparison of Workflow Scheduling Strategies on the Grid , 2005, PPAM.

[67]  Egon Balas,et al.  The Shifting Bottleneck Procedure for Job Shop Scheduling , 1988 .

[68]  G. Thompson,et al.  Algorithms for Solving Production-Scheduling Problems , 1960 .

[69]  Wilfried Jakob HyGLEAM - An Approach to Generally Applicable Hybridization of Evolutionary Algorithms , 2002, PPSN.