Etude du comportement au feu des assemblages de structures bois : approche expérimentale et modélisation

Cette etude consiste en l'elaboration d'un modele elements finis tridimensionnel decrivant le comportement des assemblages broches et boulonnes des structures bois sous actions thermiques. Ce modele integre les champs de temperatures dans un modele mecanique non lineaire. La validation du modele realise a l'aide d'essais est faite en trois etapes : la validation mecanique a froid, celle thermique et celle thermomecanique. Apres validation, le comportement des assemblages broches unitaires est modelise pour differentes durees d'exposition au feu. Enfin, la modelisation d'assemblages multiples met en evidence la caracterisation du nombre effectif en fonction des champs thermiques

[1]  A. P. Schniewind,et al.  Performance of structural wood members exposed to fire , 1975 .

[2]  P. Clancy A Parametric Study on the Time-to-Failure of Wood Framed Walls in Fire , 2002 .

[3]  Naoto Ando,et al.  Analysis of load-slip characteristics of nailed wood joints: application of a two-dimensional geometric nonlinear analysis , 2003, Journal of Wood Science.

[4]  Kei Sawata,et al.  Estimation of yield and ultimate strengths of bolted timber joints by nonlinear analysis and yield theory , 2003, Journal of Wood Science.

[5]  Thomas Lee Wilkinson Load Distribution among Bolts Parallel to Load , 1986 .

[6]  Yann Rogaume,et al.  Influence of temperature on the modulus of elasticity (MOE) of Pinus sylvestris L. , 2004 .

[7]  Alfredo M. P. G. Dias,et al.  Mechanical behaviour of timber-concrete joints , 2005 .

[8]  Karine LAPLANCHE Predicting the behaviour of dowelled connections in fire : Fire tests results and heat transfer modelling , 2006 .

[9]  James A. Milke Analytical Methods to Evaluate Fire Resistance of Structural Members , 1999 .

[10]  Andrea Frangi,et al.  Shear behaviour of bond lines in glued laminated timber beams at high temperatures , 2004, Wood Science and Technology.

[11]  Jean-Claude Dotreppe,et al.  Fire resistance of timbers from tropical countries and comparison of experimental charring rates with various models , 2005 .

[13]  J. D. Barrett,et al.  Incorporating size effects in the Tsai-Wu strength theory for Douglas-fir laminated veneer , 1998, Wood Science and Technology.

[14]  K. Sawata,et al.  Determination of embedding strength of wood for dowel-type fasteners , 2002, Journal of Wood Science.

[15]  P. Clancy Advances in modelling heat transfer through wood framed walls in fire , 2001 .

[16]  Scott Young Structural modelling of plasterboard-clad, light timber framed walls in fire , 2000 .

[17]  John J. Zahn,et al.  Design Equation for Multiple‐Fastener Wood Connections , 1991 .

[18]  Jozsef Bodig,et al.  Prediction of elastic parameters for wood , 1973 .

[19]  Jean-François Bocquet Modelisation des deformations locales du bois dans les assemblages broches et boulonnes , 1997 .

[20]  Ian F. C. Smith,et al.  Load and Resistance Factor Design of Timber Joints: International Practice and Future Direction , 2002 .

[21]  Laurent Daudeville,et al.  Fracture of multiply-bolted joints under lateral force perpendicular to wood grain , 2000, Journal of Wood Science.

[22]  Robert D. Cook,et al.  An incremental finite-element determination of stresses around loaded holes in wood plates , 1981 .

[23]  Francisco Jong,et al.  Compression properties of wood as functions of moisture, stress and temperature , 2004 .