Finite Element Approximation of the Transport of Reactive Solutes in Porous Media. Part 1: Error Estimates for Nonequilibrium Adsorption Processes

In this paper we analyze a fully practical piecewise linear finite element approximation involving numerical integration, backward Euler time discretization, and possibly regularization of the following degenerate parabolic system arising in a model of reactive solute transport in porous media: find $\{u(x,t),v(x,t)\}$ such that \begin{eqnarray*} &\partial_t u + \partial_t v - \Delta u =f \quad\mbox{in } \Omega \times(0,T] \qquad u=0\quad\mbox{on } \partial\Omega\times(0,T]&\\ &\partial_tv=k(\varphi(u)-v) \quad\mbox{in }\Omega\times(0,T]&\\ &u(\cdot\,,0)=g_1(\cdot)\quad v(\cdot\,,0) =g_2(\cdot)\quad\mbox{in } \Omega\subset \Real^d,\quad 1\le d\le 3& \end{eqnarray*} for given data $k\in \Real^+$, $f$, $g_1$, $g_2$ and a monotonically increasing $\varphi\in C^0(\Real)\cap C^1(-\infty,0]\cup(0,\infty)$ satisfying $\varphi(0)=0$, which is only locally Holder continuous with exponent $p\in(0,1)$ at the origin, e.g., $\varphi(s)\equiv[s]_+^p$. This lack of Lipschitz continuity at the origin limits the regularity of the unique solution $\{u,v\}$ and leads to difficulties in the finite element error analysis.

[1]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[2]  C. Dawson,et al.  Characteristic-Galerkin methods for contaminant transport with nonequilibrium adsorption kinetics , 1994 .

[3]  P. Knabner,et al.  Travelling waves in the transport of reactive solutes through porous media: Adsorption and binary ion exchange — Part 1 , 1992 .

[4]  Peter Knabner,et al.  Travelling waves in the transport of reactive solutes through porous media: Adsorption and binary ion exchange — Part 2 , 1992 .

[5]  Willi Jäger,et al.  Solution of porous medium type systems by linear approximation schemes , 1991 .

[6]  John W. Barrett,et al.  Finite element approximation of a model reaction — diffusion problem with a non-Lipschitz nonlinearity , 1991 .

[7]  P. Knabner,et al.  Solute transport in porous media with equilibrium and non-equilibrium multiple-site adsorpition: Travelling weaves. , 1991 .

[8]  Ricardo H. Nochetto,et al.  SharpL∞-error estimates for semilinear elliptic problems with free boundaries , 1989 .

[9]  Ricardo H. Nochetto,et al.  Approximation of Degenerate Parabolic Problems Using Numerical Integration , 1988 .

[10]  A. Visintin,et al.  Error estimates for a semi-explicit numerical scheme for Stefan-type problems , 1988 .

[11]  Michiaki Watanabe Solutions with compact support of the porous medium equation in arbitrary dimensions , 1988 .

[12]  Charles M. Elliott,et al.  Error Analysis of the Enthalpy Method for the Stefan Problem , 1987 .

[13]  A. Visintin,et al.  Numerical analysis of the multidimensional Stefan problem with supercooling and superheating , 1987 .

[14]  John W. Barrett,et al.  Total Flux Estimates for a Finite-Element Approximation of Elliptic Equations , 1986 .

[15]  D. Aronson The porous medium equation , 1986 .

[16]  Augusto Visintin,et al.  Supercooling and Superheating Effects in Phase Transitions , 1985 .

[17]  Luis A. Caffarelli,et al.  How an Initially Stationary Interface Begins to Move in Porous Medium Flow , 1983 .

[18]  Paul E. Sacks,et al.  The initial and boundary value problem for a class of degenerate parabolic equations , 1983 .

[19]  L. Peletier A necessary and sufficient condition for the existence of an interface in flows through porous media , 1974 .

[20]  C. Zheng,et al.  ; 0 ; , 1951 .

[21]  Solute Transport through Porous Media with Slow Adsorption , .