Wayeb: a Tool for Complex Event Forecasting

Complex Event Processing (CEP) systems have appeared in abundance during the last two decades. Their purpose is to detect in real-time interesting patterns upon a stream of events and to inform an analyst for the occurrence of such patterns in a timely manner. However, there is a lack of methods for forecasting when a pattern might occur before such an occurrence is actually detected by a CEP engine. We present Wayeb, a tool that attempts to address the issue of Complex Event Forecasting. Wayeb employs symbolic automata as a computational model for pattern detection and Markov chains for deriving a probabilistic description of a symbolic automaton.

[1]  Hans-Arno Jacobsen,et al.  Predictive publish/subscribe matching , 2010, DEBS '10.

[2]  G. Nuel Pattern Markov chains: optimal Markov chain embedding through deterministic finite automata , 2008 .

[3]  Cyril Ray,et al.  Heterogeneous integrated dataset for Maritime Intelligence, surveillance, and reconnaissance , 2019, Data in brief.

[4]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[5]  Julien Subercaze,et al.  Pi-CEP: Predictive Complex Event Processing Using Range Queries over Historical Pattern Space , 2017, 2017 IEEE International Conference on Data Mining Workshops (ICDMW).

[6]  Vincenzo Gulisano,et al.  The DEBS 2018 Grand Challenge , 2018, DEBS.

[7]  Neil Immerman,et al.  On complexity and optimization of expensive queries in complex event processing , 2014, SIGMOD Conference.

[8]  Philippe Flajolet,et al.  Motif statistics , 1999, Theor. Comput. Sci..

[9]  Alexander Artikis,et al.  Event Forecasting with Pattern Markov Chains , 2017, DEBS.

[10]  Peter Tiño,et al.  Predicting the Future of Discrete Sequences from Fractal Representations of the Past , 2001, Machine Learning.

[11]  Nikos Pelekis,et al.  Online event recognition from moving vessel trajectories , 2016, GeoInformatica.

[12]  Ryen W. White,et al.  Stream prediction using a generative model based on frequent episodes in event sequences , 2008, KDD.

[13]  M. W. Shields An Introduction to Automata Theory , 1988 .

[14]  Loris D'Antoni,et al.  The Power of Symbolic Automata and Transducers , 2017, CAV.

[15]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[16]  Mark Levene,et al.  Variable Length Markov Chains for Web Usage Mining , 2009, Encyclopedia of Data Warehousing and Mining.

[17]  Alexander Artikis,et al.  Probabilistic Complex Event Recognition , 2017, ACM Comput. Surv..

[18]  Ran El-Yaniv,et al.  On Prediction Using Variable Order Markov Models , 2004, J. Artif. Intell. Res..

[19]  Opher Etzion,et al.  Towards proactive event-driven computing , 2011, DEBS '11.

[20]  Alessandro Margara,et al.  Processing flows of information: From data stream to complex event processing , 2012, CSUR.

[21]  Loris D'Antoni,et al.  Extended symbolic finite automata and transducers , 2015, Formal Methods Syst. Des..

[22]  Margus Veanes,et al.  Rex: Symbolic Regular Expression Explorer , 2010, 2010 Third International Conference on Software Testing, Verification and Validation.

[23]  Boris Cule,et al.  A pattern based predictor for event streams , 2015, Expert Syst. Appl..

[24]  Howard Barringer,et al.  Quantified Event Automata: Towards Expressive and Efficient Runtime Monitors , 2012, FM.

[25]  T. W. Anderson,et al.  Statistical Inference about Markov Chains , 1957 .

[26]  Jacques Sakarovitch,et al.  Elements of Automata Theory , 2009 .

[27]  W. Y. Wendy Lou,et al.  Distribution Theory of Runs and Patterns and Its Applications: A Finite Markov Chain Imbedding Approach , 2003 .

[28]  Lóránt Farkas,et al.  Predictive complex event processing: a conceptual framework for combining complex event processing and predictive analytics , 2012, BCI '12.

[29]  Grigore Rosu,et al.  Parametric Trace Slicing and Monitoring , 2009, TACAS.

[30]  Ricardo Vilalta,et al.  Predicting rare events in temporal domains , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..