β2-microglobulin triggers NLRP3 inflammasome activation in tumor-associated macrophages to promote multiple myeloma progression.

[1]  R. Zeiser,et al.  NLRP3 Inflammasome Activation in Cancer: A Double-Edged Sword , 2020, Frontiers in Immunology.

[2]  F. Ghiringhelli,et al.  Cathepsin B Is Required for NLRP3 Inflammasome Activation in Macrophages, Through NLRP3 Interaction , 2020, Frontiers in Cell and Developmental Biology.

[3]  G. Hill,et al.  Immunotherapy of multiple myeloma. , 2020, The Journal of clinical investigation.

[4]  T. Kanneganti,et al.  Diverging inflammasome signals in tumorigenesis and potential targeting , 2019, Nature Reviews Cancer.

[5]  Hu Zhang,et al.  NLRP3 Inflammasome and Inflammatory Bowel Disease , 2019, Front. Immunol..

[6]  S. Wang,et al.  NLRP3 inflammasome activation contributes to the pathogenesis of rheumatoid arthritis , 2018, Clinical and experimental immunology.

[7]  P. L. Bergsagel,et al.  Dysregulated IL-18 Is a Key Driver of Immunosuppression and a Possible Therapeutic Target in the Multiple Myeloma Microenvironment. , 2018, Cancer cell.

[8]  R. Collins,et al.  Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial , 2017, The Lancet.

[9]  J. Moreaux,et al.  Extracellular S100A9 Protein in Bone Marrow Supports Multiple Myeloma Survival by Stimulating Angiogenesis and Cytokine Secretion , 2017, Cancer Immunology Research.

[10]  S. Teitelbaum,et al.  Inflammatory osteolysis: a conspiracy against bone. , 2017, The Journal of clinical investigation.

[11]  G. Núñez,et al.  Mechanism and Regulation of NLRP3 Inflammasome Activation. , 2016, Trends in biochemical sciences.

[12]  M. Bolognesi,et al.  Rational design of mutations that change the aggregation rate of a protein while maintaining its native structure and stability , 2016, Scientific Reports.

[13]  H. Goldschmidt,et al.  Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[14]  R. W. Sabnis LysoSensor Green DND 189 , 2015 .

[15]  R. Civitelli,et al.  NLRP3 mediates osteolysis through inflammation‐dependent and ‐independent mechanisms , 2015, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[16]  K. Schroder,et al.  A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases , 2015, Nature Medicine.

[17]  G. Görgün,et al.  Targeting the bone marrow microenvironment in multiple myeloma , 2015, Immunological reviews.

[18]  P. L. Bergsagel,et al.  TPL2 kinase regulates the inflammatory milieu of the myeloma niche. , 2014, Blood.

[19]  M. Bolognesi,et al.  Class I Major Histocompatibility Complex, the Trojan Horse for Secretion of Amyloidogenic β2-Microglobulin* , 2013, The Journal of Biological Chemistry.

[20]  G. Morgan,et al.  International Myeloma Working Group recommendations for the treatment of multiple myeloma-related bone disease. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[21]  E. Latz,et al.  Activation and regulation of the inflammasomes , 2013, Nature Reviews Immunology.

[22]  C. Mitsiades,et al.  MAP3K8 kinase regulates myeloma growth by cell‐autonomous and non‐autonomous mechanisms involving myeloma‐associated monocytes/macrophages , 2013, British journal of haematology.

[23]  Sevinç Şahin,et al.  Tumor-associated macrophages as a prognostic parameter in multiple myeloma , 2013, Annals of Hematology.

[24]  Leah E. Escalante,et al.  Macrophages and mesenchymal stromal cells support survival and proliferation of multiple myeloma cells , 2012, British journal of haematology.

[25]  K. Nilsson,et al.  Luminescent conjugated poly- and oligo-thiophenes: optical ligands for spectral assignment of a plethora of protein aggregates. , 2012, Biochemical Society transactions.

[26]  Jos W. M. van der Meer,et al.  Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases , 2012, Nature Reviews Drug Discovery.

[27]  M. Bolognesi,et al.  Hereditary systemic amyloidosis due to Asp76Asn variant β2-microglobulin. , 2012, The New England journal of medicine.

[28]  S. Rutella,et al.  Targeting Multiple-Myeloma-Induced Immune Dysfunction to Improve Immunotherapy Outcomes , 2012, Clinical & developmental immunology.

[29]  M. Bolognesi,et al.  Structure, stability, and aggregation of β-2 microglobulin mutants: insights from a Fourier transform infrared study in solution and in the crystalline state. , 2012, Biophysical journal.

[30]  S. Gabrielsson,et al.  The inflammatory cytokine IL-18 induces self-reactive innate antibody responses regulated by natural killer T cells , 2011, Proceedings of the National Academy of Sciences.

[31]  J. Tschopp,et al.  A role for mitochondria in NLRP3 inflammasome activation , 2011, Nature.

[32]  Christine E. Becker,et al.  Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes , 2010, Nature Immunology.

[33]  M. Bolognesi,et al.  DE‐loop mutations affect β2 microglobulin stability, oligomerization, and the low‐pH unfolded form , 2010, Protein science : a publication of the Protein Society.

[34]  J. Kutok,et al.  Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. , 2010, Blood.

[35]  Eva Szomolanyi-Tsuda,et al.  The AIM2 inflammasome is essential for host-defense against cytosolic bacteria and DNA viruses , 2010, Nature Immunology.

[36]  Simon C Watkins,et al.  Cholesterol‐dependent cytolysins induce rapid release of mature IL‐1β from murine macrophages in a NLRP3 inflammasome and cathepsin B‐dependent manner , 2009, Journal of leukocyte biology.

[37]  H. Beer,et al.  Thalidomide Inhibits Activation of Caspase-11 , 2009, The Journal of Immunology.

[38]  Michael L. Wang,et al.  Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug-induced apoptosis. , 2009, Blood.

[39]  S. Radford,et al.  Glimpses of the molecular mechanisms of β2-microglobulin fibril formation in vitro: Aggregation on a complex energy landscape , 2009, FEBS letters.

[40]  M. Dimopoulos,et al.  Increased expression of macrophage inflammatory protein-1α on trephine biopsies correlates with extensive bone disease, increased angiogenesis and advanced stage in newly diagnosed patients with multiple myeloma , 2009, Leukemia.

[41]  A. Dispenzieri,et al.  Induction of a chronic disease state in patients with smoldering or indolent multiple myeloma by targeting interleukin 1{beta}-induced interleukin 6 production and the myeloma proliferative component. , 2009, Mayo Clinic proceedings.

[42]  Sky W. Brubaker,et al.  Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin , 2008, Nature Immunology.

[43]  K. Rock,et al.  Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization , 2008, Nature Immunology.

[44]  K. Moore,et al.  The NALP3 inflammasome is involved in the innate immune response to amyloid-β , 2008, Nature Immunology.

[45]  M. Bolognesi,et al.  The controlling roles of Trp60 and Trp95 in beta2-microglobulin function, folding and amyloid aggregation properties. , 2008, Journal of molecular biology.

[46]  B. Barlogie,et al.  The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy. , 2007, Blood.

[47]  F. Sutterwala,et al.  The inflammasome in pathogen recognition and inflammation , 2007, Journal of leukocyte biology.

[48]  F. Martinon,et al.  Gout-associated uric acid crystals activate the NALP3 inflammasome , 2006, Nature.

[49]  V. Dixit,et al.  Cryopyrin activates the inflammasome in response to toxins and ATP , 2006, Nature.

[50]  J. Crowley,et al.  International staging system for multiple myeloma. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[51]  K. Yudoh,et al.  Interleukin (IL) 18 stimulates osteoclast formation through synovial T cells in rheumatoid arthritis: comparison with IL1β and tumour necrosis factor α , 2004 .

[52]  K. Sfiridaki,et al.  Interleukin-18 in multiple myeloma patients: serum levels in relation to response to treatment and survival. , 2004, Leukemia research.

[53]  Bart Barlogie,et al.  A phase 2 study of bortezomib in relapsed, refractory myeloma. , 2003, The New England journal of medicine.

[54]  L. Coussens,et al.  Inflammation and cancer , 2002, Nature.

[55]  P. Richardson,et al.  The role of tumor necrosis factor α in the pathophysiology of human multiple myeloma: therapeutic applications , 2001, Oncogene.

[56]  S. Radford,et al.  Partially unfolded states of beta(2)-microglobulin and amyloid formation in vitro. , 2000, Biochemistry.

[57]  J. Lust,et al.  THE ROLE OF INTERLEUKIN-1β IN THE PATHOGENESIS OF MULTIPLE MYELOMA , 1999 .

[58]  H. Seo,et al.  Involvement of beta 2-microglobulin modified with advanced glycation end products in the pathogenesis of hemodialysis-associated amyloidosis. Induction of human monocyte chemotaxis and macrophage secretion of tumor necrosis factor-alpha and interleukin-1. , 1994, The Journal of clinical investigation.

[59]  M. A. Saper,et al.  Structure of the human class I histocompatibility antigen, HLA-A2 , 1987, Nature.

[60]  B. Barlogie,et al.  High-dose glucocorticoid treatment of resistant myeloma. , 1986, Annals of internal medicine.

[61]  M Arakawa,et al.  A new form of amyloid protein associated with chronic hemodialysis was identified as beta 2-microglobulin. , 1985, Biochemical and biophysical research communications.

[62]  R. Bataille,et al.  Beta-2-microglobulin in myeloma: optimal use for staging, prognosis, and treatment--a prospective study of 160 patients. , 1984, Blood.

[63]  T. Saxne,et al.  Plasma levels of beta 2-microglobulin in rheumatoid arthritis. , 1980, Annals of the rheumatic diseases.

[64]  P. Sandel,et al.  Serum levels of beta 2-microglobulin: a new marker of activity in Crohn's disease. , 1979, The New England journal of medicine.

[65]  D. Hughes,et al.  Gaucher disease and myeloma. , 2013, Critical reviews in oncogenesis.

[66]  A. Palumbo,et al.  Multiple myeloma. , 2011, The New England journal of medicine.

[67]  K. Yudoh,et al.  Interleukin (IL) 18 stimulates osteoclast formation through synovial T cells in rheumatoid arthritis: comparison with IL1 beta and tumour necrosis factor alpha. , 2004, Annals of the rheumatic diseases.

[68]  Y. Frutiger,et al.  Macrophages as an important source of paracrine IL6 in myeloma bone marrow. , 1990, Current topics in microbiology and immunology.