Terrain parameter estimation and traversability assessment for mobile robots

The estimation of terrain characteristics is an important missions of Martian exploration rovers. Since only limited resources and human supervision are available, efficient and autonomous method of estimation are required. In this thesis, an on-line estimation method of two important terrain parameters, cohesion and internal friction angle, is developed. The method uses onboard rover sensors and is computationally efficient. Terrain parameter estimation is of scientific interest, and can also be useful in predicting rover mobility on rough-terrain. A method to estimate traversability of a rover on deformable terrain using on-board sensors is presented. Simulation and experimental results show that the proposed methods can accurately and efficiently estimate traversability of deformable terrain. Thesis Supervisor: Steven Dubowsky Title: Professor of Mechanical Engineering

[1]  Homayoun Seraji,et al.  Behavior-based robot navigation on challenging terrain: A fuzzy logic approach , 2002, IEEE Trans. Robotics Autom..

[2]  Y. Nohse,et al.  A measurement of basic mechanical quantities of off-the-road traveling performance , 1991 .

[3]  Reid G. Simmons,et al.  Recent progress in local and global traversability for planetary rovers , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[4]  Gary D. Clow,et al.  A summary of Viking sample-trench analyses for angles of internal friction and cohesions , 1982 .

[5]  Homayoun Seraji,et al.  A rule-based fuzzy traversability index for mobile robot navigation , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[6]  Steven Dubowsky,et al.  Multi-Sensor Terrain Estimation for Planetary Rovers , 2003 .

[7]  H. J. Moore,et al.  Overview of the Mars Pathfinder mission and assessment of landing site predictions. , 1997, Science.

[8]  Penny Probert Smith,et al.  Relating Torque and Slip in an Odometric Model for an Autonomous Agricultural Vehicle , 2002, Auton. Robots.

[9]  Joy A. Crisp,et al.  Soil‐like deposits observed by Sojourner, the Pathfinder rover , 1999 .

[10]  Raymond N. Yong,et al.  Vehicle Traction Mechanics , 1984 .

[11]  D. Gee-Clough Soil-vehicle interaction (B) , 1991 .

[12]  Johann Borenstein,et al.  FLEXnav: fuzzy logic expert rule-based position estimation for mobile robots on rugged terrain , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[13]  Steven Dubowsky,et al.  Rapid physics-based rough-terrain rover planning with sensor and control uncertainty , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[14]  L. Matthies,et al.  The Pathfinder Microrover , 1996 .

[15]  Homayoun Seraji,et al.  Real-time assessment of terrain traversability for autonomous rover navigation , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[16]  Jo Yung Wong,et al.  Terramechanics and off-road vehicles , 1989 .

[17]  A. R. Reece,et al.  Prediction of rigid wheel performance based on the analysis of soil-wheel stresses , 1967 .

[18]  B. Hanamoto,et al.  The analytical determination of drawbar pull as a function of slip for tracked vehicles in deformable soils , 1961 .

[19]  Richard Volpe,et al.  Technology development and testing for enhanced Mars Rover Sample Return operations , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[20]  Jo Yung Wong,et al.  Theory of ground vehicles , 1978 .

[21]  Alonzo Kelly,et al.  Rough Terrain Autonomous Mobility—Part 2: An Active Vision, Predictive Control Approach , 1998, Auton. Robots.

[22]  Alonzo Kelly,et al.  Terrain typing for real robots , 1995, Proceedings of the Intelligent Vehicles '95. Symposium.

[23]  Donald B. Gennery,et al.  Traversability Analysis and Path Planning for a Planetary Rover , 1999, Auton. Robots.

[24]  M. Golombek The Mars Pathfinder Mission , 1997 .

[25]  Edward McKyes,et al.  The cutting of soil by narrow blades , 1977 .

[26]  M. G. Bekker Introduction to Terrain-Vehicle Systems , 1969 .

[27]  Won Hong,et al.  Modeling, estimation, and control of robot-soil interactions , 2001 .

[28]  M. Grahn Prediction of sinkage and rolling resistance for off-the-road vehicles considering penetration velocity☆ , 1991 .