Uniqueness, Lipschitz Stability, and Reconstruction for the Inverse Optical Tomography Problem

In this paper, we consider the inverse problem of recovering a diffusion and absorption coefficients in steady-state optical tomography problem from the Neumann-to-Dirichlet map. We first prove a Global uniqueness and Lipschitz stability estimate for the absorption parameter provided that the diffusion is known. Then, we prove a Lipschitz stability result for simultaneous recovery of diffusion and absorption. In both cases the parameters belong to a known finite subspace with a priori known bounds. The proofs relies on a monotonicity result combined with the techniques of localized potentials. To numerically solve the inverse problem, we propose a Kohn-Vogeliustype cost functional over a class of admissible parameters subject to two boundary value problems. The reformulation of the minimization problem via the Neumann-toDirichlet operator allows us to obtain the optimality conditions by using the Frechet differentiability of this operator and its inverse. The reconstruction is then performed by means of an iterative algorithm based on a quasi-Newton method. Finally, we illustrate some numerical results.

[1]  Andreas Hauptmann Approximation of full-boundary data from partial-boundary electrode measurements , 2017 .

[2]  Bastian Gebauer,et al.  Localized potentials in electrical impedance tomography , 2008 .

[3]  Masahiro Yamamoto,et al.  Lipschitz stability for a hyperbolic inverse problem by finite local boundary data , 2006 .

[4]  Matteo Santacesaria,et al.  Calderón's inverse problem with a finite number of measurements II: independent data , 2018, Forum of Mathematics, Sigma.

[5]  Bastian Harrach,et al.  Simultaneous determination of the diffusion and absorption coefficient from boundary data , 2012 .

[6]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[7]  S. Arridge,et al.  Nonuniqueness in diffusion-based optical tomography. , 1998, Optics letters.

[8]  Bangti Jin,et al.  A Semismooth Newton Method for Nonlinear Parameter Identification Problems with Impulsive Noise , 2012, SIAM J. Imaging Sci..

[9]  Bastian Harrach On stable invertibility and global Newton convergence for convex monotonic functions , 2019, ArXiv.

[10]  Niculae Mandache,et al.  Exponential instability in an inverse problem for the Schrodinger equation , 2001 .

[11]  Andrea Barth,et al.  Detecting stochastic inclusions in electrical impedance tomography , 2017, 1706.03962.

[12]  Allaberen Ashyralyev,et al.  Partial Differential Equations of Elliptic Type , 2004 .

[13]  Bastian Harrach,et al.  Uniqueness and Lipschitz stability in electrical impedance tomography with finitely many electrodes , 2018, Inverse Problems.

[14]  Michael V. Klibanov,et al.  Stability estimates for ill-posed Cauchy problems involving hyperbolic equations and inequalities , 1993 .

[15]  Bastian von Harrach,et al.  Monotonicity and Enclosure Methods for the p-Laplace Equation , 2017, SIAM J. Appl. Math..

[16]  Bastian Harrach,et al.  Local uniqueness for an inverse boundary value problem with partial data , 2016, 1810.05834.

[17]  R. Kohn,et al.  Determining conductivity by boundary measurements II. Interior results , 1985 .

[18]  Kazufumi Ito,et al.  A Regularization Parameter for Nonsmooth Tikhonov Regularization , 2011, SIAM J. Sci. Comput..

[19]  Bangti Jin,et al.  A Semismooth Newton Method for L1 Data Fitting with Automatic Choice of Regularization Parameters and Noise Calibration , 2010, SIAM J. Imaging Sci..

[20]  Erkki Somersalo,et al.  Estimation of optical absorption in anisotropic background , 2002 .

[21]  S. Arridge Optical tomography in medical imaging , 1999 .

[22]  B. Harrach On uniqueness in diffuse optical tomography , 2009 .

[23]  Maarten V. de Hoop,et al.  Lipschitz stability for the electrostatic inverse boundary value problem with piecewise linear conductivities , 2015, 1509.06277.

[24]  Elena Beretta,et al.  Determining linear cracks by boundary measurements: Lipschitz stability , 1996 .

[25]  Elena Beretta,et al.  Lipschitz Stability for the Electrical Impedance Tomography Problem: The Complex Case , 2010, 1008.4046.

[26]  Bangti Jin,et al.  A duality-based splitting method for ` 1-TV image restoration with automatic regularization parameter choice ∗ , 2009 .

[27]  Giovanni Alessandrini,et al.  Stable determination of conductivity by boundary measurements , 1988 .

[28]  Sergio Vessella,et al.  Lipschitz stability for the inverse conductivity problem , 2005, Adv. Appl. Math..

[29]  Jin Keun Seo,et al.  Exact Shape-Reconstruction by One-Step Linearization in Electrical Impedance Tomography , 2010, SIAM J. Math. Anal..

[30]  Eva Sincich,et al.  Lipschitz stability for the inverse Robin problem , 2007 .

[31]  Masahiro Yamamoto,et al.  Global Lipschitz stability in an inverse hyperbolic problem by interior observations , 2001 .

[32]  A H Hielscher,et al.  Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer. , 1999, Medical physics.

[33]  Maarten V. de Hoop,et al.  Lipschitz Stability of an Inverse Boundary Value Problem for a Schrödinger-Type Equation , 2012, SIAM J. Math. Anal..

[34]  L. Bourgeois A remark on Lipschitz stability for inverse problems , 2013 .

[35]  Bastian Harrach,et al.  Monotonicity in Inverse Medium Scattering on Unbounded Domains , 2018, SIAM J. Appl. Math..

[36]  E. Sincich,et al.  Lipschitz stability for the inverse conductivity problem for a conformal class of anisotropic conductivities , 2014, 1405.0475.

[37]  Masahiro Yamamoto,et al.  Lipschitz stability in inverse parabolic problems by the Carleman estimate , 1998 .

[38]  Gunther Uhlmann,et al.  Electrical impedance tomography and Calderón's problem , 2009 .

[39]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[40]  Bastian Harrach,et al.  Unique shape detection in transient eddy current problems , 2013 .

[41]  Masahiro Yamamoto,et al.  Lipschitz stability in determining density and two Lame coefficients , 2007 .

[42]  A. Klose,et al.  Quasi-Newton methods in optical tomographic image reconstruction , 2003 .

[43]  Bastian Harrach,et al.  Global Uniqueness and Lipschitz-Stability for the Inverse Robin Transmission Problem , 2018, SIAM J. Appl. Math..

[44]  Bastian Harrach,et al.  Lipschitz stability estimate and reconstruction of Lamé parameters in linear elasticity , 2019, Inverse Problems in Science and Engineering.

[45]  Sergio Vessella,et al.  Lipschitz stability for a stationary 2D inverse problem with unknown polygonal boundary , 2006 .

[46]  Bastian Harrach Uniqueness, stability and global convergence for a discrete inverse elliptic Robin transmission problem , 2019 .

[47]  S R Arridge,et al.  Recent advances in diffuse optical imaging , 2005, Physics in medicine and biology.

[48]  Maarten V. de Hoop,et al.  Lipschitz stability for a piecewise linear Schrödinger potential from local Cauchy data , 2017, Asymptot. Anal..

[49]  Christian Clason,et al.  L∞ fitting for inverse problems with uniform noise , 2012 .

[50]  Vladimir Druskin On the Uniqueness of Inverse Problems from Incomplete Boundary Data , 1998, SIAM J. Appl. Math..

[51]  Hongyu Liu,et al.  On Localizing and Concentrating Electromagnetic Fields , 2018, SIAM J. Appl. Math..