Safety and efficacy of MD1003 (high-dose biotin) in patients with progressive multiple sclerosis (SPI2): a randomised, double-blind, placebo-controlled, phase 3 trial

D. Arnold | S. Reingold | C. Pozzilli | M. Sormani | X. Montalban | S. Saidha | F. Fazekas | H. Hartung | A. Toosy | K. Schmierer | F. Sedel | G. Comi | M. Freedman | F. Lublin | Aaron E Miller | J. Wolinsky | G. Cutter | F. Munschauer | B. Weinstock-Guttman | M. Goldman | T. Derfuss | M. Buttmann | G. Giovannoni | Devon S. Conway | B. Cohen | L. Ramió-Torrentá | L. Brundin | J. Kuhle | M. Freedman | A. Reder | H. Tumani | S. Lynch | C. O. Guevara | C. Ford | P. Duquette | V. Block | B. Cree | S. Newsome | J. Graves | R. Lisak | P. Coyle | M. Marriott | S. Krieger | R. Macdonell | E. Bernitsas | P. Giacomini | R. Naismith | D. Selchen | K. Rammohan | C. Riley | O. Aktas | G. Vorobeychik | J. Lycke | L. Amezcua | T. Leist | M. Agius | R. Zabad | A. Rae-Grant | M. Apperson | D. Rau | J. Barton | G. Laureys | M. Terzi | R. Ampapa | B. Willekens | M. Vachová | E. Meluzínová | B. Greenberg | Derrick Robertson | G. I. Ayuso | J. Calkwood | J. Cooper | J. Corboy | R. A. González | G. Reifschneider | Victoria Fernández Sánchez | Mária Sátori | R. Taláb | V. Devonshire | D. Bandari | H. Moses | J. Preiningerova | Christopher A. Severson | Valerie J. Block | N. Klippel | L. Samkoff | T. Kuempfel | Stewart Webb | M. Kita | J. Guadagno | J. Carter | J. Girard | M. Zajda | Vernon D. Rowe | D. Mahad | Kyle E Smoot | R. Trudell | M. Picone | R. McKelvey | Paul Friedemann | P. Sokolowski | L. Witkowski | Elias-Hamp Birte | Agata Kłosek | Józef Kościelniak | Fryze Waldemar | Jose Rodriguez | Adrian V Pace | B. Bagert | Edward Fox | Bhatia Perminder | S. Stoll | Sanjay Yathiraj | P. Friedemann | K. Smoot | Agata Kłósek | Adrian V. Pace | Mitchel Freedman

[1]  M. Beal,et al.  High‐dose biotin restores redox balance, energy and lipid homeostasis, and axonal health in a model of adrenoleukodystrophy , 2020, Brain pathology.

[2]  J. Antel,et al.  Effects of Biotin on survival, ensheathment, and ATP production by oligodendrocyte lineage cells in vitro , 2020, PloS one.

[3]  G. Comi,et al.  The window of opportunity for treatment of progressive multiple sclerosis. , 2020, Current opinion in neurology.

[4]  B. Uitdehaag,et al.  Clinical outcome measures in SPMS trials: An analysis of the IMPACT and ASCEND original trial data sets , 2019, Multiple sclerosis.

[5]  R. Bowen,et al.  Best practices in mitigating the risk of biotin interference with laboratory testing. , 2019, Clinical biochemistry.

[6]  H. Hartung,et al.  Current therapeutic landscape in multiple sclerosis: an evolving treatment paradigm , 2019, Current opinion in neurology.

[7]  G. Avery Biotin interference in immunoassay: a review for the laboratory scientist , 2019, Annals of clinical biochemistry.

[8]  Jill A. Hollenbach,et al.  Association of Continuous Assessment of Step Count by Remote Monitoring With Disability Progression Among Adults With Multiple Sclerosis , 2019, JAMA network open.

[9]  R. Gold,et al.  Progressive multiple sclerosis: latest therapeutic developments and future directions , 2019, Therapeutic advances in neurological disorders.

[10]  C. Schmitz,et al.  Visualization of the Breakdown of the Axonal Transport Machinery: a Comparative Ultrastructural and Immunohistochemical Approach , 2018, Molecular Neurobiology.

[11]  D. Arnold,et al.  Effect of natalizumab on disease progression in secondary progressive multiple sclerosis (ASCEND): a phase 3, randomised, double-blind, placebo-controlled trial with an open-label extension , 2018, The Lancet Neurology.

[12]  Ludwig Kappos,et al.  Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study , 2018, The Lancet.

[13]  Julien Cohen-Adad,et al.  In vivo characterization of cortical and white matter neuroaxonal pathology in early multiple sclerosis , 2017, Brain : a journal of neurology.

[14]  Bernhard Hemmer,et al.  Ocrelizumab versus Placebo in Primary Progressive Multiple Sclerosis , 2017, The New England journal of medicine.

[15]  G. Birnbaum,et al.  High dose biotin as treatment for progressive multiple sclerosis. , 2016, Multiple sclerosis and related disorders.

[16]  M. J. Pletcher,et al.  Continuous daily assessment of multiple sclerosis disability using remote step count monitoring , 2017, Journal of Neurology.

[17]  F. Sedel,et al.  Targeting demyelination and virtual hypoxia with high-dose biotin as a treatment for progressive multiple sclerosis , 2016, Neuropharmacology.

[18]  H. Lassmann,et al.  Neurodegeneration in multiple sclerosis and neuromyelitis optica , 2016, Journal of Neurology, Neurosurgery & Psychiatry.

[19]  M. Clanet,et al.  MD1003 (high-dose biotin) for the treatment of progressive multiple sclerosis: A randomised, double-blind, placebo-controlled study , 2016, Multiple sclerosis.

[20]  Ludwig Kappos,et al.  Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial , 2016, The Lancet.

[21]  D. Galanaud,et al.  High doses of biotin in chronic progressive multiple sclerosis: a pilot study. , 2015, Multiple sclerosis and related disorders.

[22]  B. Trapp,et al.  Pathological mechanisms in progressive multiple sclerosis , 2015, The Lancet Neurology.

[23]  Jeffrey A. Cohen,et al.  Defining the clinical course of multiple sclerosis: the 2013 revisions. , 2014, Neurology.

[24]  M. Levin,et al.  Neurodegeneration in multiple sclerosis involves multiple pathogenic mechanisms , 2014, Degenerative neurological and neuromuscular disease.

[25]  S. Lynch,et al.  Iron chelation and multiple sclerosis , 2013, ASN neuro.

[26]  L. Tong,et al.  Structure and function of biotin-dependent carboxylases , 2012, Cellular and Molecular Life Sciences.

[27]  Peter K. Stys,et al.  Will the real multiple sclerosis please stand up? , 2012, Nature Reviews Neuroscience.

[28]  A. Traboulsee,et al.  A phase III study evaluating the efficacy and safety of MBP8298 in secondary progressive MS , 2011, Neurology.

[29]  Peter K Stys,et al.  Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis , 2009, The Lancet Neurology.