A Note on Multilevel Based Error Estimation

Abstract By employing the infinite multilevel representation of the residual, we derive computable bounds to estimate the distance of finite element approximations to the solution of the Poisson equation. If the finite element approximation is a Galerkin solution, the derived error estimator coincides with the standard element and edge based estimator. If Galerkin orthogonality is not satisfied, then the discrete residual additionally appears in terms of the BPX preconditioner. As a by-product of the present analysis, conditions are derived such that the hierarchical error estimation is reliable and efficient.

[1]  Willy Dörfler,et al.  Convergence of an adaptive hp finite element strategy in one space dimension , 2007 .

[2]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[3]  Rüdiger Verfürth,et al.  A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .

[4]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[5]  Wolfgang Dahmen,et al.  Stable multiscale bases and local error estimation for elliptic problems , 1997 .

[6]  Peter Oswald,et al.  Multilevel Finite Element Approximation , 1994 .

[7]  Zhiming Chen,et al.  Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems , 2006 .

[8]  D. Braess Finite Elements: Finite Elements , 2007 .

[9]  Reinhold Schneider,et al.  Multilevel frames for sparse tensor product spaces , 2008, Numerische Mathematik.

[10]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[11]  I. Babuska,et al.  A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .

[12]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[13]  Rob P. Stevenson,et al.  Adaptive Solution of Operator Equations Using Wavelet Frames , 2003, SIAM J. Numer. Anal..

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  Andreas Veeser,et al.  LOCALLY EFFICIENT AND RELIABLE A POSTERIORI ERROR ESTIMATORS FOR DIRICHLET PROBLEMS , 2006 .

[16]  M. Fornasier,et al.  Adaptive Frame Methods for Elliptic Operator Equations: The Steepest Descent Approach , 2007 .

[17]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[18]  Ronald A. DeVore,et al.  Fast computation in adaptive tree approximation , 2004, Numerische Mathematik.

[19]  Rolf Rannacher,et al.  Adaptive finite element solution of eigenvalue problems: Balancing of discretization and iteration error , 2010, J. Num. Math..

[20]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[21]  Rob P. Stevenson,et al.  An optimal adaptive wavelet method without coarsening of the iterands , 2006, Math. Comput..

[22]  Michael Griebel,et al.  Multilevel Algorithms Considered as Iterative Methods on Semidefinite Systems , 1994, SIAM J. Sci. Comput..

[23]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[24]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[25]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[26]  Carsten Carstensen,et al.  A unifying theory of a posteriori finite element error control , 2005, Numerische Mathematik.

[27]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..

[28]  W. Doerfler,et al.  A robust adaptive strategy for the nonlinear Poisson equation , 1995, Computing.

[29]  Massimo Fornasier,et al.  Adaptive frame methods for elliptic operator equations , 2007, Adv. Comput. Math..

[30]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[31]  Peter Oswald,et al.  Finite element approximation , 1994 .

[32]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[33]  Silvia Bertoluzza,et al.  Adaptive Wavelet Methods , 2011 .