A Note on Multilevel Based Error Estimation
暂无分享,去创建一个
[1] Willy Dörfler,et al. Convergence of an adaptive hp finite element strategy in one space dimension , 2007 .
[2] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[3] Rüdiger Verfürth,et al. A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .
[4] Endre Süli,et al. Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.
[5] Wolfgang Dahmen,et al. Stable multiscale bases and local error estimation for elliptic problems , 1997 .
[6] Peter Oswald,et al. Multilevel Finite Element Approximation , 1994 .
[7] Zhiming Chen,et al. Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems , 2006 .
[8] D. Braess. Finite Elements: Finite Elements , 2007 .
[9] Reinhold Schneider,et al. Multilevel frames for sparse tensor product spaces , 2008, Numerische Mathematik.
[10] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[11] I. Babuska,et al. A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .
[12] Ricardo H. Nochetto,et al. Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..
[13] Rob P. Stevenson,et al. Adaptive Solution of Operator Equations Using Wavelet Frames , 2003, SIAM J. Numer. Anal..
[14] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[15] Andreas Veeser,et al. LOCALLY EFFICIENT AND RELIABLE A POSTERIORI ERROR ESTIMATORS FOR DIRICHLET PROBLEMS , 2006 .
[16] M. Fornasier,et al. Adaptive Frame Methods for Elliptic Operator Equations: The Steepest Descent Approach , 2007 .
[17] Rob P. Stevenson,et al. Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..
[18] Ronald A. DeVore,et al. Fast computation in adaptive tree approximation , 2004, Numerische Mathematik.
[19] Rolf Rannacher,et al. Adaptive finite element solution of eigenvalue problems: Balancing of discretization and iteration error , 2010, J. Num. Math..
[20] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[21] Rob P. Stevenson,et al. An optimal adaptive wavelet method without coarsening of the iterands , 2006, Math. Comput..
[22] Michael Griebel,et al. Multilevel Algorithms Considered as Iterative Methods on Semidefinite Systems , 1994, SIAM J. Sci. Comput..
[23] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[24] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[25] W. Dahmen. Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.
[26] Carsten Carstensen,et al. A unifying theory of a posteriori finite element error control , 2005, Numerische Mathematik.
[27] Wolfgang Dahmen,et al. Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..
[28] W. Doerfler,et al. A robust adaptive strategy for the nonlinear Poisson equation , 1995, Computing.
[29] Massimo Fornasier,et al. Adaptive frame methods for elliptic operator equations , 2007, Adv. Comput. Math..
[30] J. Pasciak,et al. Parallel multilevel preconditioners , 1990 .
[31] Peter Oswald,et al. Finite element approximation , 1994 .
[32] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[33] Silvia Bertoluzza,et al. Adaptive Wavelet Methods , 2011 .