A regularized-stabilized mixed finite element formulation for viscoplasticity of Bingham type

Abstract In this article, we present a new mixed stabilized–regularized finite element formulation in primitive variables, with continuous velocity and discontinuous pressure interpolations for the steady flow of an incompressible fluid of Bingham type. This formulation is based on an augmented Lagrangian regularization technique and a least squares stabilization method. Mathematical analyses are performed for the new formulation in terms of stability, existence and uniqueness of the solution. Optimal orders of convergence are obtained mathematically, improving on classical methods, which also present limitations as regards the values of the yield stress. Numerical results are presented confirming the theory developed here, and they show the robustness of the new method, with stability obtained for the velocity and, especially, for the pressure when the yield stress is very high.

[1]  par J. Cea,et al.  Methodes numeriques pour i'ecoulement laminaire d'un fluide rigide viscoplastique incompressible , 1972 .

[2]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multi-dimensional advective-diffusive systems , 1987 .

[3]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[4]  R. Glowinski,et al.  Sur l'approximation d'une inéquation variationnelle elliptique de type Bingham , 1976 .

[5]  Thomas J. R. Hughes,et al.  The Stokes problem with various well-posed boundary conditions - Symmetric formulations that converge for all velocity/pressure spaces , 1987 .

[6]  Y. Wang FINITE ELEMENT ANALYSIS OF THE DUCT FLOW OF BINGHAM PLASTIC FLUIDS: AN APPLICATION OF THE VARIATIONAL INEQUALITY , 1997 .

[7]  J. Tinsley Oden,et al.  Finite Elements, Mathematical Aspects. , 1986 .

[8]  T. Papanastasiou Flows of Materials with Yield , 1987 .

[9]  E. C. Bingham Fluidity And Plasticity , 1922 .

[10]  J. Oden Finite Elements: A Second Course , 1983 .

[11]  Raja R. Huilgol,et al.  On the determination of the plug flow region in Bingham fluids through the application of variational inequalities , 1995 .

[12]  Roland Glowinski,et al.  On the numerical simulation of Bingham visco-plastic flow: Old and new results , 2007 .

[13]  On stable equal‐order finite element formulations for incompressible flow problems , 1992 .

[14]  Existence et approximation de points selles pour certains problèmes non linéaires , 1977 .

[15]  P. P. Mosolov,et al.  Variational methods in the theory of the fluidity of a viscous-plastic medium , 1965 .

[16]  I. Frigaard,et al.  On the usage of viscosity regularisation methods for visco-plastic fluid flow computation , 2005 .

[17]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[18]  P. P. Mosolov,et al.  On stagnant flow regions of a viscous-plastic medium in pipes , 1966 .

[19]  Zhenjiang You,et al.  Application of the augmented Lagrangian method to steady pipe flows of Bingham, Casson and Herschel-Bulkley fluids , 2005 .

[20]  Jim Douglas,et al.  An absolutely stabilized finite element method for the stokes problem , 1989 .

[21]  Laetitia Boscardin Methodes de lagrangien augmente pour la resolution des equations de navier-stokes dans le cas d'ecoulements de fluide de bingham , 1999 .

[22]  Howard A. Barnes,et al.  The yield stress—a review or ‘παντα ρει’—everything flows? , 1999 .

[23]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[24]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[25]  G. Tallini,et al.  ON THE EXISTENCE OF , 1996 .

[26]  Michel Bercovier,et al.  A finite-element method for incompressible non-Newtonian flows , 1980 .

[27]  R. Byron Bird,et al.  The Rheology and Flow of Viscoplastic Materials , 1983 .

[28]  I. Frigaard,et al.  Static wall layers in the displacement of two visco-plastic fluids in a plane channel , 2000, Journal of Fluid Mechanics.

[29]  R. Glowinski Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .

[30]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[31]  B. Reddy Mixed variational inequalities arising in elastoplasticity , 1992 .

[32]  Pierre Saramito,et al.  An adaptive finite element method for viscoplastic fluid flows in pipes , 2001 .

[33]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .