A regularized-stabilized mixed finite element formulation for viscoplasticity of Bingham type
暂无分享,去创建一个
[1] par J. Cea,et al. Methodes numeriques pour i'ecoulement laminaire d'un fluide rigide viscoplastique incompressible , 1972 .
[2] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multi-dimensional advective-diffusive systems , 1987 .
[3] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[4] R. Glowinski,et al. Sur l'approximation d'une inéquation variationnelle elliptique de type Bingham , 1976 .
[5] Thomas J. R. Hughes,et al. The Stokes problem with various well-posed boundary conditions - Symmetric formulations that converge for all velocity/pressure spaces , 1987 .
[6] Y. Wang. FINITE ELEMENT ANALYSIS OF THE DUCT FLOW OF BINGHAM PLASTIC FLUIDS: AN APPLICATION OF THE VARIATIONAL INEQUALITY , 1997 .
[7] J. Tinsley Oden,et al. Finite Elements, Mathematical Aspects. , 1986 .
[8] T. Papanastasiou. Flows of Materials with Yield , 1987 .
[9] E. C. Bingham. Fluidity And Plasticity , 1922 .
[10] J. Oden. Finite Elements: A Second Course , 1983 .
[11] Raja R. Huilgol,et al. On the determination of the plug flow region in Bingham fluids through the application of variational inequalities , 1995 .
[12] Roland Glowinski,et al. On the numerical simulation of Bingham visco-plastic flow: Old and new results , 2007 .
[13] On stable equal‐order finite element formulations for incompressible flow problems , 1992 .
[14] Existence et approximation de points selles pour certains problèmes non linéaires , 1977 .
[15] P. P. Mosolov,et al. Variational methods in the theory of the fluidity of a viscous-plastic medium , 1965 .
[16] I. Frigaard,et al. On the usage of viscosity regularisation methods for visco-plastic fluid flow computation , 2005 .
[17] J. Lions,et al. Inequalities in mechanics and physics , 1976 .
[18] P. P. Mosolov,et al. On stagnant flow regions of a viscous-plastic medium in pipes , 1966 .
[19] Zhenjiang You,et al. Application of the augmented Lagrangian method to steady pipe flows of Bingham, Casson and Herschel-Bulkley fluids , 2005 .
[20] Jim Douglas,et al. An absolutely stabilized finite element method for the stokes problem , 1989 .
[21] Laetitia Boscardin. Methodes de lagrangien augmente pour la resolution des equations de navier-stokes dans le cas d'ecoulements de fluide de bingham , 1999 .
[22] Howard A. Barnes,et al. The yield stress—a review or ‘παντα ρει’—everything flows? , 1999 .
[23] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[24] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[25] G. Tallini,et al. ON THE EXISTENCE OF , 1996 .
[26] Michel Bercovier,et al. A finite-element method for incompressible non-Newtonian flows , 1980 .
[27] R. Byron Bird,et al. The Rheology and Flow of Viscoplastic Materials , 1983 .
[28] I. Frigaard,et al. Static wall layers in the displacement of two visco-plastic fluids in a plane channel , 2000, Journal of Fluid Mechanics.
[29] R. Glowinski. Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .
[30] Arnold Neumaier,et al. Introduction to Numerical Analysis , 2001 .
[31] B. Reddy. Mixed variational inequalities arising in elastoplasticity , 1992 .
[32] Pierre Saramito,et al. An adaptive finite element method for viscoplastic fluid flows in pipes , 2001 .
[33] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .