Nano-optic endoscope for high-resolution optical coherence tomography in vivo

[1]  M. Vieth,et al.  Quantitative Phase Imaging Using Digital Holographic Microscopy Reliably Assesses Morphology and Reflects Elastic Properties of Fibrotic Intestinal Tissue , 2019, Scientific Reports.

[2]  F. Jaffer,et al.  3D cellular-resolution imaging in arteries using few-mode interferometry , 2019, Light: Science & Applications.

[3]  S. Xiao,et al.  TiO2 metasurfaces: From visible planar photonics to photochemistry , 2019, Science Advances.

[4]  anonymous In Review , 2018 .

[5]  Lida P. Hariri,et al.  Endobronchial Optical Coherence Tomography for Low‐Risk Microscopic Assessment and Diagnosis of Idiopathic Pulmonary Fibrosis In Vivo , 2017, American journal of respiratory and critical care medicine.

[6]  Federico Capasso,et al.  Metalenses: Versatile multifunctional photonic components , 2017, Science.

[7]  Hao F. Zhang,et al.  Visible-light optical coherence tomography: a review , 2017, Journal of biomedical optics.

[8]  Philip Wijesinghe,et al.  Ultrahigh-resolution optical coherence elastography through a micro-endoscope: towards in vivo imaging of cellular-scale mechanics. , 2017, Biomedical optics express.

[9]  Federico Capasso,et al.  Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization. , 2017, Physical review letters.

[10]  G. Tearney,et al.  Astigmatism corrected common path probe for optical coherence tomography , 2017, Lasers in surgery and medicine.

[11]  Chulho Hyun,et al.  Flexible, high-resolution micro-optical coherence tomography endobronchial probe toward in vivo imaging of cilia. , 2017, Optics letters.

[12]  Wei Ting Chen,et al.  Achromatic metalens over 60 nm bandwidth in the visible , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[13]  Hongki Yoo,et al.  Endoscopic micro-optical coherence tomography with extended depth of focus using a binary phase spatial filter. , 2017, Optics letters.

[14]  rendan,et al.  Ultrahigh-resolution optical coherence elastography through a micro-endoscope: towards in vivo imaging of cellular-scale mechanics , 2017 .

[15]  Brett E. Bouma,et al.  Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo , 2016, Science Translational Medicine.

[16]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[17]  Wei Ting Chen,et al.  Super-Dispersive Off-Axis Meta-Lenses for Compact High Resolution Spectroscopy. , 2016, Nano letters.

[18]  Federico Capasso,et al.  Achromatic Metasurface Lens at Telecommunication Wavelengths. , 2015, Nano letters.

[19]  Chih-Ming Wang,et al.  Aluminum plasmonic multicolor meta-hologram. , 2015, Nano letters.

[20]  F. Capasso,et al.  Broadband Multifunctional Efficient Meta-Gratings Based on Dielectric Waveguide Phase Shifters. , 2015, Nano letters.

[21]  Mohammadreza Khorasaninejad,et al.  Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter , 2014, Nature Communications.

[22]  Xingde Li,et al.  Diffractive catheter for ultrahigh-resolution spectral-domain volumetric OCT imaging. , 2014, Optics letters.

[23]  C. Channick,et al.  Toward the guidance of transbronchial biopsy: identifying pulmonary nodules with optical coherence tomography. , 2013, Chest.

[24]  Martin Villiger,et al.  Seeing beyond the bronchoscope to increase the diagnostic yield of bronchoscopic biopsy. , 2013, American journal of respiratory and critical care medicine.

[25]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[26]  Y. Yagi,et al.  Imaging the Subcellular Structure of Human Coronary Atherosclerosis Using 1-μm Resolution Optical Coherence Tomography (μOCT) , 2011, Nature Medicine.

[27]  Adrian Mariampillai,et al.  In vivo endoscopic multi-beam optical coherence tomography. , 2010, Physics in medicine and biology.

[28]  Edmund Koch,et al.  Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging. , 2009, Optics express.

[29]  Calum MacAulay,et al.  In vivo Optical Coherence Tomography Imaging of Preinvasive Bronchial Lesions , 2008, Clinical Cancer Research.

[30]  Daniel L Marks,et al.  Interferometric Synthetic Aperture Microscopy , 2007, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[31]  Stefan Kray,et al.  Simultaneous dual-band ultra-high resolution optical coherence tomography. , 2007, Optics express.

[32]  Brett E Bouma,et al.  Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography. , 2007, Journal of the American College of Cardiology.

[33]  John A. Evans,et al.  Comprehensive volumetric optical microscopy in vivo , 2006, Nature Medicine.

[34]  Eiji Toyota,et al.  Assessment of coronary arterial plaque by optical coherence tomography. , 2006, The American journal of cardiology.

[35]  Eiji Toyota,et al.  Assessment of coronary arterial thrombus by optical coherence tomography. , 2006, The American journal of cardiology.

[36]  윤석현,et al.  System and Method for Optical Coherence Imaging , 2005 .

[37]  S. Yun,et al.  Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting. , 2004, Optics express.

[38]  S. Yun,et al.  High-speed optical frequency-domain imaging. , 2003, Optics express.

[39]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[40]  M. Wojtkowski,et al.  Real-time in vivo imaging by high-speed spectral optical coherence tomography. , 2003, Optics letters.

[41]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[42]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[43]  E. Halpern,et al.  Characterization of Human Atherosclerosis by Optical Coherence Tomography , 2002, Circulation.

[44]  A. D'Sa Erratum , 2005, CL.

[45]  J. Fujimoto,et al.  Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett's esophagus. , 2000, Endoscopy.

[46]  J. Izatt,et al.  Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design. , 1999, Optics letters.

[47]  J. Fujimoto,et al.  In vivo ultrahigh-resolution optical coherence tomography. , 1999, Optics letters.

[48]  Wolfgang Drexler,et al.  High resolution in vivo intra-arterial imaging with optical coherence tomography , 1999, Photonics West - Biomedical Optics.

[49]  G. Ha Usler,et al.  "Coherence radar" and "spectral radar"-new tools for dermatological diagnosis. , 1998, Journal of biomedical optics.

[50]  G. Gelikonov,et al.  In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa. , 1997, Optics express.

[51]  J. Fujimoto,et al.  In vivo endoscopic optical biopsy with optical coherence tomography. , 1997, Science.

[52]  B E Bouma,et al.  Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography: erratum. , 1996, Optics letters.

[53]  A. Fercher,et al.  Measurement of intraocular distances by backscattering spectral interferometry , 1995 .

[54]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991, LEOS '92 Conference Proceedings.

[55]  A. Fercher,et al.  Eye-length measurement by interferometry with partially coherent light. , 1988, Optics letters.

[56]  T Izumitani,et al.  Gradient-index rod lens made by a double ion-exchange process. , 1988, Applied optics.

[57]  D. Davies,et al.  Optical coherence-domain reflectometry: a new optical evaluation technique. , 1987, Optics letters.

[58]  J. Fujimoto,et al.  Femtosecond optical ranging in biological systems. , 1986, Optics letters.