A Short Survey on Optical Material Recognition

The complexity of visual material appearance as observed in the huge variation in material appearance under different viewing and illumination conditions makes material recognition a highly challenging task. In the scope of this paper, we discuss the facts that make material appearance that complex and provide a survey on technical achievements towards a reliable material recognition that have been presented in the literature so far. In addition, we discuss still open challenges that might be in the focus of future research.

[1]  Iasonas Kokkinos,et al.  Describing Textures in the Wild , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Jitendra Malik,et al.  Recognizing surfaces using three-dimensional textons , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[3]  Edward H. Adelson,et al.  Recognizing Materials Using Perceptually Inspired Features , 2013, International Journal of Computer Vision.

[4]  Jitendra Malik,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.

[5]  Andrew Zisserman,et al.  Texture classification: are filter banks necessary? , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[6]  Chao Liu,et al.  Discriminative illumination: Per-pixel classification of raw materials based on optimal projections of spectral BRDF , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Gertjan J. Burghouts,et al.  Color Textons for Texture Recognition , 2006, BMVC.

[8]  Edward H. Adelson,et al.  Exploring features in a Bayesian framework for material recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  Shree K. Nayar,et al.  Reflectance and texture of real-world surfaces , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  Cor J. Veenman,et al.  Visual Word Ambiguity , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Mario Fritz,et al.  Classifying materials in the real world , 2010, Image Vis. Comput..

[12]  Sabine Süsstrunk,et al.  Material Classification Using Color and NIR Images , 2009, CIC.

[13]  Florent Perronnin,et al.  Fisher Kernels on Visual Vocabularies for Image Categorization , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Ralf Sarlette,et al.  Acquisition, Synthesis, and Rendering of Bidirectional Texture Functions , 2005, Comput. Graph. Forum.

[15]  Michael Weinmann,et al.  Material Recognition for Efficient Acquisition of Geometry and Reflectance , 2014, ECCV Workshops.

[16]  Chao Liu,et al.  Learning Discriminative Illumination and Filters for Raw Material Classification with Optimal Projections of Bidirectional Texture Functions , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Bernd Jähne,et al.  Learning of Optimal Illumination for Material Classification , 2010, DAGM-Symposium.

[18]  Hakan Cevikalp,et al.  Face recognition based on image sets , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[19]  Xiaofeng Ren,et al.  Toward Robust Material Recognition for Everyday Objects , 2011, BMVC.

[20]  Lewis D. Griffin,et al.  Using Basic Image Features for Texture Classification , 2010, International Journal of Computer Vision.

[21]  Kristin J. Dana,et al.  3D Texture Recognition Using Bidirectional Feature Histograms , 2004, International Journal of Computer Vision.

[22]  Edward H. Adelson,et al.  Material perception: What can you see in a brief glance? , 2010 .

[23]  Andrew Zisserman,et al.  Classifying Images of Materials: Achieving Viewpoint and Illumination Independence , 2002, ECCV.

[24]  Ko Nishino,et al.  Visual Material Traits: Recognizing Per-Pixel Material Context , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[25]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[26]  Oliver Wang,et al.  Material classification using BRDF slices , 2009, CVPR.

[27]  David A. Clausi,et al.  Sorted random projections for robust rotation-invariant texture classification , 2012, Pattern Recognit..

[28]  Mario Fritz,et al.  On the Significance of Real-World Conditions for Material Classification , 2004, ECCV.

[29]  Noah Snavely,et al.  OpenSurfaces , 2013, ACM Trans. Graph..

[30]  Mario Fritz,et al.  Recognizing Materials from Virtual Examples , 2012, ECCV.

[31]  Gertjan J. Burghouts,et al.  Material-specific adaptation of color invariant features , 2009, Pattern Recognit. Lett..

[32]  James T. Kajiya,et al.  Anisotropic reflection models , 1985, SIGGRAPH.

[33]  Barbara Caputo,et al.  Class-Specific Material Categorisation , 2005, ICCV.

[34]  Andrew Zisserman,et al.  Unifying statistical texture classification frameworks , 2004, Image Vis. Comput..

[35]  Michael Weinmann,et al.  Material Classification Based on Training Data Synthesized Using a BTF Database , 2014, ECCV.

[36]  Noah Snavely,et al.  Material recognition in the wild with the Materials in Context Database , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Chao Liu,et al.  Discriminative illumination: Per-pixel classification of raw materials based on optimal projections of spectral BRDF , 2012, CVPR.

[38]  Cordelia Schmid,et al.  Aggregating local descriptors into a compact image representation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[39]  Lewis D. Griffin,et al.  Texture classification with a dictionary of basic image features , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Andrew Zisserman,et al.  A Statistical Approach to Material Classification Using Image Patch Exemplars , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Joost van de Weijer,et al.  Describing Reflectances for Color Segmentation Robust to Shadows, Highlights, and Textures , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.