Metal–tin derivatives of compartmental Schiff Bases: Synthesis, structure and application

[1]  M. F. C. G. Silva,et al.  Noncovalent interactions in metal complex catalysis , 2019, Coordination Chemistry Reviews.

[2]  A. Frontera,et al.  Tetrel bonding interactions at work: Impact on tin and lead coordination compounds , 2019, Coordination Chemistry Reviews.

[3]  S. Hazra,et al.  CHAPTER 11. Noncovalent Interactions in the Nitroaldol (Henry) Reaction , 2019, Catalysis Series.

[4]  M. Andruh Heterotrimetallic complexes in molecular magnetism. , 2018, Chemical communications.

[5]  A. Pombeiro,et al.  Flexibility and lability of a phenyl ligand in hetero-organometallic 3d metal-Sn(iv) compounds and their catalytic activity in Baeyer-Villiger oxidation of cyclohexanone. , 2017, Dalton transactions.

[6]  A. Pombeiro,et al.  Non-covalent interactions in the synthesis of coordination compounds: Recent advances , 2017 .

[7]  A. Pombeiro,et al.  Chalcogen bonding in synthesis, catalysis and design of materials. , 2017, Dalton transactions.

[8]  A. Pombeiro,et al.  N-HO and N-HCl supported 1D chains of heterobimetallic CuII/NiII-SnIV cocrystals. , 2016, Dalton transactions.

[9]  A. Pombeiro,et al.  Sulfonated Schiff base Sn(IV) complexes as potential anticancer agents. , 2016, Journal of Inorganic Biochemistry.

[10]  L. Martins,et al.  A sulfonated Schiff base dimethyltin(IV) coordination polymer: synthesis, characterization and application as a catalyst for ultrasound- or microwave-assisted Baeyer–Villiger oxidation under solvent-free conditions , 2016 .

[11]  S. Hazra,et al.  Heterometallic Copper(II)–Tin(II/IV) Salts, Cocrystals, and Salt Cocrystals: Selectivity and Structural Diversity Depending on Ligand Substitution and the Metal Oxidation State , 2016 .

[12]  I. Bruno,et al.  Cambridge Structural Database , 2002 .

[13]  M. Andruh The exceptionally rich coordination chemistry generated by Schiff-base ligands derived from o-vanillin. , 2015, Dalton transactions.

[14]  G. Jin,et al.  Multi-component coordination-driven self-assembly toward heterometallic macrocycles and cages , 2015 .

[15]  Sujit Roy,et al.  Recent advances in heterobimetallic catalysis across a "transition metal-tin" motif. , 2015, Chemical Society reviews.

[16]  See Mun Lee,et al.  Synthesis, characterization and biological studies of diorganotin(IV) complexes with tris[(hydroxymethyl)aminomethane] Schiff bases , 2015 .

[17]  P. Braunstein,et al.  Multimetallic catalysis based on heterometallic complexes and clusters. , 2015, Chemical reviews.

[18]  A. Köhn,et al.  A series of M(II)Cu(II)3 stars (M = Mn, Ni, Cu, Zn) exhibiting unusual magnetic properties. , 2015, Inorganic chemistry.

[19]  Xiaoping Yang,et al.  Luminescent 4f and d-4f polynuclear complexes and coordination polymers with flexible salen-type ligands , 2014 .

[20]  A. Jana,et al.  A tale of crystal engineering of metal complexes derived from a special ligand family having a cosmopolitan compartment , 2014 .

[21]  Antonio Bauzá,et al.  Tetrel-bonding interaction: rediscovered supramolecular force? , 2013, Angewandte Chemie.

[22]  W. Wernsdorfer,et al.  A new versatile class of hetero-tetra-metallic assemblies: highlighting single-molecule magnet behaviour. , 2013, Chemical communications.

[23]  Sukwon Hong,et al.  Cooperative bimetallic catalysis in asymmetric transformations. , 2012, Chemical Society reviews.

[24]  B. Foxman,et al.  Activation of CO2 by a heterobimetallic Zr/Co complex. , 2011, Journal of the American Chemical Society.

[25]  M. Andruh Compartmental Schiff-base ligands--a rich library of tectons in designing magnetic and luminescent materials. , 2011, Chemical communications.

[26]  F. Lloret,et al.  Bis(oxalato)chromium(III) complexes: Versatile tectons in designing heterometallic coordination compounds , 2011 .

[27]  D. Schollmeyer,et al.  Syntheses, structures, and magnetic properties of diphenoxo-bridged Cu(II)Ln(III) and Ni(II)(low-spin)Ln(III) compounds derived from a compartmental ligand (Ln = Ce-Yb). , 2010, Inorganic Chemistry.

[28]  S. Hazra,et al.  Syntheses and crystal structures of CuIIBiIII, CuIIBaIICuII, [CuIIPbII]2 and cocrystallized (UVIO2)2.4CuII complexes: structural diversity of the coordination compounds derived from N,N′-ethylenebis(3-ethoxysalicylaldiimine) , 2010 .

[29]  A. Slawin,et al.  Mononuclear and Mixed-Metal Dimethyltin Pacman Complexes of a Schiff-Base Pyrrole Macrocycle , 2010 .

[30]  S. Hazra,et al.  Role of Water and Solvent in the Formation of Three Mononuclear Copper(II) Crystals: A New Type of Hydrate Isomerism in Coordination Chemistry , 2009 .

[31]  S. Hazra,et al.  Cocrystallized Dinuclear-Mononuclear CuII3NaI and Double—Decker—Triple—Decker CuII5KI3 Complexes Derived from N,N'-Ethylenebis(3-ethoxysalicylaldimine) , 2009 .

[32]  S. Matsunaga,et al.  A heterobimetallic Ga/Yb-Schiff base complex for catalytic asymmetric alpha-addition of isocyanides to aldehydes. , 2009, Journal of the American Chemical Society.

[33]  Yi Pan,et al.  Catalytic Asymmetric Ring-Opening Reaction of meso-Epoxides with Aryl Selenols and Thiols Catalyzed by a Heterobimetallic Gallium-Titanium-Salen Complex , 2009 .

[34]  Yi Pan,et al.  Enantioselective ring-opening reaction of meso-epoxides with ArSH catalyzed by heterobimetallic Ti–Ga–Salen system , 2009 .

[35]  D. Gerlach,et al.  Hypercoordinate Organosilicon Complexes of an ONN′O′ Chelating Ligand: Regio- and Diastereoselectivity of Rearrangement Reactions in Si−Salphen Systems , 2009 .

[36]  E. Hey‐Hawkins,et al.  Study of the cytotoxic activity of di and triphenyltin(IV) carboxylate complexes. , 2008, Journal of inorganic biochemistry.

[37]  S. Matsunaga,et al.  A heterobimetallic Pd/La/Schiff base complex for anti-selective catalytic asymmetric nitroaldol reactions and applications to short syntheses of beta-adrenoceptor agonists. , 2008, Angewandte Chemie.

[38]  D. Pappalardo,et al.  Octahedral Alkylbis(phenoxy‐imine)tin(IV) Complexes: Effect of Substituents on the Geometry of the Complexes and Their Reactivity Toward Ionizing Species and Ethylene , 2007 .

[39]  H. Miyasaka,et al.  Magnetic assemblies based on Mn(III) salen analogues , 2007 .

[40]  R. Pedrido,et al.  Self-Assembly of Dimeric MnIII–Schiff-Base Complexes Tuned by Perchlorate Anions , 2007 .

[41]  M. Andruh Oligonuclear complexes as tectons in crystal engineering: structural diversity and magnetic properties. , 2007, Chemical communications.

[42]  D. Darensbourg,et al.  Making plastics from carbon dioxide: salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2. , 2007, Chemical reviews.

[43]  S. Matsunaga,et al.  syn-Selective catalytic asymmetric nitro-Mannich reactions using a heterobimetallic Cu-Sm-Schiff base complex. , 2007, Journal of the American Chemical Society.

[44]  H. García,et al.  Chiral salen complexes: an overview to recoverable and reusable homogeneous and heterogeneous catalysts. , 2006, Chemical reviews.

[45]  W. Tolman,et al.  Heterobimetallic activation of dioxygen: characterization and reactivity of novel Cu(I)-Ge(II) complexes. , 2006, Inorganic chemistry.

[46]  L. Zamudio-Rivera,et al.  Synthesis, characterization, biocide and toxicological activities of di-n-butyl- and diphenyl-tin(IV)-salicyliden-beta-amino alcohol derivatives. , 2005, Inorganic chemistry.

[47]  D. Darensbourg,et al.  Ring-Opening Polymerization of Trimethylene Carbonate Using Aluminum(III) and Tin(IV) Salen Chloride Catalysts , 2005 .

[48]  Pierangelo Metrangolo,et al.  Halogen bonding based recognition processes: a world parallel to hydrogen bonding. , 2005, Accounts of chemical research.

[49]  C. Geraldes,et al.  Vanadium(IV and V) Complexes of Schiff Bases and Reduced Schiff Bases Derived from the Reaction of Aromatic o-Hydroxyaldehydes and Diamines: Synthesis, Characterisation and Solution Studies , 2005 .

[50]  P. Cozzi Metal-Salen Schiff base complexes in catalysis: practical aspects. , 2004, Chemical Society reviews.

[51]  M. North,et al.  In situ formation of a heterobimetallic chiral [(salen)Ti(IV)]/[(salen)V(V)] catalyst for the asymmetric addition of TMSCN to benzaldehyde. , 2004, Angewandte Chemie.

[52]  S. Nguyen,et al.  (Salen)tin complexes: syntheses, characterization, crystal structures, and catalytic activity in the formation of propylene carbonate from CO(2) and propylene oxide. , 2004, Inorganic chemistry.

[53]  D. Cunningham,et al.  Donor properties of the vanadyl ion: reactions of vanadyl salicylaldimine beta-ketimine and acetylacetonato complexes with groups 14 and 15 Lewis acids. , 2002, Inorganic chemistry.

[54]  N. McClenaghan,et al.  Dendrimers based on ruthenium(II) and osmium(II) polypyridine complexes and the approach of using complexes as ligands and complexes as metals , 2001 .

[55]  P. Metrangolo,et al.  Halogen bonding: a paradigm in supramolecular chemistry. , 2001, Chemistry.

[56]  H. Gornitzka,et al.  (Schiff base) divalent group 14 element species: manganese and iron complexes (Salen)M=Mn(Co)2(eta 5-C5H5) (M14 = Ge, Sn, Pb) and (Salen)Sn=Fe(CO)4. , 2000, Inorganic chemistry.

[57]  D. Cunningham Triphenylphosphine oxide adducts of diphenylantimony(V) and diorganotin(IV) Lewis acids: structures of SnPh2Cl2·OPPh3, SnPh2Cl2·2OPPh3, SnPh2Br2·OPPh3 and SbPh2Cl3·OPPh3 , 2000 .

[58]  S. Rokita,et al.  A Ni(Salen)-Biotin Conjugate for Rapid Isolation of Accessible DNA , 2000 .

[59]  E. Jacobsen,et al.  Asymmetric catalysis of epoxide ring-opening reactions. , 2000, Accounts of chemical research.

[60]  H. Gornitzka,et al.  Transition Metal Complexes of (Schiff Base)Divalent Group 14 Element Species [(salen)M]n=M′(CO)6–n (n = 1, 2; M = Ge, Sn, Pb; M′ = Cr, W) , 2000 .

[61]  S. Ng,,et al.  1:1 Adducts of triphenyltin chloride with oxovanadium(IV) tetradentate Schiff-base complexes , 1999 .

[62]  D. Riley Functional mimics of superoxide dismutase enzymes as therapeutic agents. , 1999, Chemical reviews.

[63]  C. Bailly,et al.  Oxidation of CuII to CuIII, Free Radical Production, and DNA Cleavage by Hydroxy-salen−Copper Complexes. Isomeric Effects Studied by ESR and Electrochemistry , 1999 .

[64]  D. Cunningham,et al.  Transition-metal Schiff-base complexes as ligands in tin chemistry. Part 7. Reactions of organotin(IV) Lewis acids with [M(L)]2 [M=Ni, Cu and Zn; H2L=N,N′-bis(3-methoxysalicylidene)benzene-1,3-diamine and its -1,4-diamine analog] , 1998 .

[65]  M. Tokunaga,et al.  Asymmetric catalysis with water: efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis. , 1997, Science.

[66]  W. Musleh,et al.  Salen-manganese complexes: combined superoxide dismutase/catalase mimics with broad pharmacological efficacy. , 1997, Advances in pharmacology.

[67]  M. Waring,et al.  Synthesis of a Functionalized Salen−Copper Complex and Its Interaction with DNA , 1996 .

[68]  J. Gallagher,et al.  Transition-metal Schiff-base complexes as ligands in tin chemistry Part 6. Reactions of diorganotin(IV) dinitrates with M(3MeO-sal1,3pn) [M = Ni, Co or Zn; H23MeO-sal1,3pn = N,N′-bis(3-methoxysalicylidene)-propane-1,3-diamine] , 1995 .

[69]  G. Oliva,et al.  Synthesis and characterization of [n,n′-ethylenebis(3-ethoxysalicylideneaminato)] oxovanadium(iv) , 1995 .

[70]  D. Cunningham,et al.  Transition metal Schiff-base complexes as ligands in tin chemistry , 1994 .

[71]  J. Gallagher,et al.  Transition-metal Schiff-base complexes as ligands in tin chemistry. Part 5. Structural studies of intimate ion-paired heterobimetallic complexes of tin(IV) and nickel, copper or zinc with 3-methoxysalicylaldimine ligands , 1994 .

[72]  M. Baudry,et al.  Salen-manganese complexes are superoxide dismutase-mimics. , 1993, Biochemical and biophysical research communications.

[73]  J. Gallagher,et al.  Transition-metal Schiff-base complexes as ligands in tin chemistry. Part 3. An X-ray crystallographic and tin-119 Mössbauer spectroscopic study of adduct formation between tin(IV) Lewis acids and nickel 3-methoxysalicylaldimine complexes , 1993 .

[74]  D. Cunningham,et al.  Transition metal Schiff-base complexes as ligands in tin chemistry. Part 2. A tin-119 Mössbauer spectroscopic investigation of the adducts SnBunxCl3–x(OR)·ML (x= 0 or 1; R = H or alkyl; M = CuII or NiII; L = quadridentate Schiff-base ligand) , 1992 .

[75]  J. Gallagher,et al.  The crystal structure of [(SnBr)·Ni(H2O)(MeCN)(L)]+Br–(H2L = N,N′-1,3-propylenebis-3-methoxysalicylideneamine): the first authenticated example of a monohalostannate(II) cation , 1991 .

[76]  Scott R. Wilson,et al.  Enantioselective Epoxidation of Unfunctionalized Olefins Catalyzed by (salen)Manganese Complexes , 1990 .

[77]  K. A. Joergensen Transition-metal-catalyzed epoxidations , 1989 .

[78]  J. Gallagher,et al.  A vanadyl donor bond to tin in a heterobimetallic complex: the crystal structure of SnPh3Cl•VO(salpren) (H2salpren = N,N'-1,2-propylenebis-salicylideneamine) , 1989 .

[79]  J. Gallagher,et al.  Vanadyl as a donor group in heterobimetallic complexes , 1989 .

[80]  W. Wilson,et al.  Transition metal-tin chemistry , 1989 .

[81]  J. Simmie,et al.  Oxidative activation of CoII in Schiff base complexes in the presence of n-butyltin trichloride: the molecular structure of BunSn(OMe)Cl2·CoCl(salen)[salen =N,N′-ethylenebis(salicylideneaminato)] , 1985 .

[82]  T. N. Srivastava,et al.  Transition metal schiff base chelates as ligands for phenyltin(IV) chlorides , 1978 .

[83]  L. Pellerito,et al.  Crystal structure of the molecular adduct of dimethyltin(IV) chloride with N,N′-ethylenebis(salicylideneiminato) nickel(II) , 1974 .

[84]  L. Pellerito,et al.  Complexes of organometallic compounds : XXXVII. Mössbauer and other studies on adducts of organotin(IV) chlorides with N,N′-ethylenebis(salicylideneiminato)-nickel(II) , 1974 .

[85]  E. Sinn,et al.  Schiff base metal complexes as ligands1 , 1969 .

[86]  E. Sinn,et al.  Metal complexes as chelates. II. Binuclear complexes containing similar and dissimilar metal atoms , 1968 .

[87]  E. Sinn,et al.  Metal complexes as ligands bi- and tri-nuclear complexes containing similar and dissimilar metal atoms , 1967 .

[88]  P. Pfeiffer,et al.  Tricyclische orthokondensierte Nebenvalenzringe , 1933 .