Positively Charged Termini of the L2 Minor Capsid Protein Are Necessary for Papillomavirus Infection

ABSTRACT Coexpression of bovine papillomavirus L1 with L2 mutants lacking either eight N-terminal or nine C-terminal amino acids that encode positively charged domains resulted in wild-type levels of viral genome encapsidation. Despite wild-type binding to the cell surface, the resulting virions were noninfectious. An L2 mutant encoding a scrambled version of the nine C-terminal residues restored infectivity, in contrast to an L2 mutant encoding a scrambled version of the N-terminal residues.

[1]  D. Lowy,et al.  L1 Interaction Domains of Papillomavirus L2 Necessary for Viral Genome Encapsidation , 2001, Journal of Virology.

[2]  Y. Taketani,et al.  Human Papillomavirus Type 16 Minor Capsid Protein L2 N-Terminal Region Containing a Common Neutralization Epitope Binds to the Cell Surface and Enters the Cytoplasm , 2001, Journal of Virology.

[3]  K. Jansen,et al.  Neutralization of human papillomavirus (HPV) pseudovirions: a novel and efficient approach to detect and characterize HPV neutralizing antibodies. , 2000, Virology.

[4]  P. Beard,et al.  Infectious human papillomavirus type 18 pseudovirions. , 1998, Journal of molecular biology.

[5]  I. Frazer,et al.  DNA packaging by L1 and L2 capsid proteins of bovine papillomavirus type 1. , 1998, Virology.

[6]  P. Coursaget,et al.  In vitro gene transfer using human papillomavirus-like particles. , 1998, Nucleic acids research.

[7]  D. Lowy,et al.  The Papillomavirus Minor Capsid Protein, L2, Induces Localization of the Major Capsid Protein, L1, and the Viral Transcription/Replication Protein, E2, to PML Oncogenic Domains , 1998, Journal of Virology.

[8]  M. Sapp,et al.  Generation and neutralization of pseudovirions of human papillomavirus type 33 , 1997, Journal of virology.

[9]  W. Liu,et al.  Sequence close to the N-terminus of L2 protein is displayed on the surface of bovine papillomavirus type 1 virions. , 1997, Virology.

[10]  D. Lowy,et al.  In vitro generation and type-specific neutralization of a human papillomavirus type 16 virion pseudotype , 1996, Journal of virology.

[11]  P. Li,et al.  Association with capsid proteins promotes nuclear targeting of simian virus 40 DNA. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[12]  I. Frazer,et al.  Sequences required for the nuclear targeting and accumulation of human papillomavirus type 6B L2 protein. , 1995, Virology.

[13]  D. Lowy,et al.  Papillomavirus L1 capsids agglutinate mouse erythrocytes through a proteinaceous receptor , 1995, Journal of virology.

[14]  P. Schirmacher,et al.  Binding and internalization of human papillomavirus type 33 virus-like particles by eukaryotic cells , 1995, Journal of virology.

[15]  H. Zentgraf,et al.  Papillomavirus capsid binding and uptake by cells from different tissues and species , 1995, Journal of virology.

[16]  Darren W. Henderson,et al.  Neutralization of bovine papillomavirus by antibodies to L1 and L2 capsid proteins , 1994, Journal of virology.

[17]  D. Lowy,et al.  Interaction of papillomaviruses with the cell surface , 1994, Journal of virology.

[18]  I. Frazer,et al.  Interaction of human papillomavirus (HPV) type 16 capsid proteins with HPV DNA requires an intact L2 N-terminal sequence , 1994, Journal of virology.

[19]  D. Lowy,et al.  Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles , 1993, Journal of virology.

[20]  I. Frazer,et al.  Synthesis and assembly of infectious bovine papillomavirus particles in vitro. , 1993, The Journal of general virology.

[21]  D. Lowy,et al.  Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[22]  I. Frazer,et al.  Expression of vaccinia recombinant HPV 16 L1 and L2 ORF proteins in epithelial cells is sufficient for assembly of HPV virion-like particles. , 1991, Virology.

[23]  J. Doorbar,et al.  Identification of proteins encoded by the L1 and L2 open reading frames of human papillomavirus 1a , 1987, Journal of virology.

[24]  R. Schlegel,et al.  Levels of bovine papillomavirus RNA and protein expression correlate with variations in the tumorigenic phenotype of hamster cells , 1987, Journal of virology.

[25]  D. Wojciechowicz,et al.  DNA-binding activity of papillomavirus proteins , 1987, Journal of virology.

[26]  D. Lowy,et al.  A quantitative in vitro focus assay for bovine papilloma virus. , 1980, Virology.