Space-Time-Frequency Degrees of Freedom: Fundamental Limits for Spatial Information

We bound the number of electromagnetic signals which may be observed over a frequency range [F-W, F+W] a time interval [0, T] within a sphere of radius R. We show that the such constrained signals may be represented by a series expansion whose terms are bounded exponentially to zero beyond a threshold. Our result implies there is a finite amount of information which may be extracted from a region of space via electromagnetic radiation.

[1]  Rodney A. Kennedy,et al.  Spatial Concentration of Wave-Fields: Towards Spatial Information Content in Arbitrary Multipath Scattering , 2003 .

[2]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[3]  Rodney A. Kennedy,et al.  Source-field wave-field concentration and dimension: towards spatial information content , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[4]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[5]  J. Y. Hui,et al.  Spatial communication capacity based on electromagnetic wave equations , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[6]  Rodney A. Kennedy,et al.  On dimensionality of multipath fields: Spatial extent and richness , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[7]  Rodney A. Kennedy,et al.  Bounds on the Spatial Richness of Multipath , 2002 .

[8]  John J. Sopka,et al.  Introductory Functional Analysis with Applications (Erwin Kreyszig) , 1979 .

[9]  H. Pollak,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — III: The dimension of the space of essentially time- and band-limited signals , 1962 .

[10]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[11]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[12]  Thushara D. Abhayapala,et al.  Bounds on Space-Time-Frequency Dimensionality , 2007, ArXiv.

[13]  Robert W. Brodersen,et al.  Degrees of freedom in multiple-antenna channels: a signal space approach , 2005, IEEE Transactions on Information Theory.

[14]  L.W. Hanlen,et al.  Intrinsic Capacity of Random Scattered Spatial Communication , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Chengdu.

[15]  G. Arfken,et al.  Mathematical methods for physicists 6th ed. , 1996 .

[16]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[17]  C. Shannon,et al.  Communication In The Presence Of Noise , 1998, Proceedings of the IEEE.

[18]  T. L. Marzetta,et al.  Fundamental limitations on the capacity of wireless links that use polarimetric antenna arrays , 2002, Proceedings IEEE International Symposium on Information Theory,.

[19]  Rodney A. Kennedy,et al.  Limits to multiantenna capacity of spatially selective channels , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[20]  G. Arfken Mathematical Methods for Physicists , 1967 .