On invariants of graphs with applications to knot theory

To each weighted graph Γ, two invariants, a polynomial P Γ (x,y,z) and the signature σ(Γ), are defined. the various partial degress of P Γ (x,y,z) and σ(Γ) are expressed in terms of maximal spanning graphs of Γ. Furthermore, one unexpected property of Tutte's dichromate is proved. These results are applied to knots or links in S 3

[1]  Louis H. Kauffman,et al.  New invariants in the theory of knots , 1988 .

[2]  K. Murasugi On the signature of links , 1970 .

[3]  Vaughan F. R. Jones,et al.  Hecke algebra representations of braid groups and link polynomials , 1987 .

[4]  P. Traczyk Non-trivial negative links have positive signature , 1988 .

[5]  Seiya Negami,et al.  Polynomial invariants of graphs , 1987 .

[6]  V. Jones A polynomial invariant for knots via von Neumann algebras , 1985 .

[7]  Louis H. Kauffman,et al.  State Models and the Jones Polynomial , 1987 .

[8]  Claude Berge,et al.  Graphs and Hypergraphs , 2021, Clustering.

[9]  G. Chartrand,et al.  Introduction to the theory of graphs , 1971 .

[10]  H. Whitney 2-Isomorphic Graphs , 1933 .

[11]  M. Thistlethwaite,et al.  On the Kauffman polynomial of an adequate link , 1988 .

[12]  P. Traczyk 10₁₀₁ has no period 7: a criterion for periodic links , 1990 .

[13]  K. Murasugi ON A CERTAIN NUMERICAL INVARIANT OF LINK TYPES , 1965 .

[14]  Morwen Thistlethwaite,et al.  A spanning tree expansion of the jones polynomial , 1987 .

[15]  E. Williams,et al.  Introduction to the Theory of Grammar , 1986 .

[16]  K. Murasugi Jones polynomials and classical conjectures in knot theory. II , 1987, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  Morwen Thistlethwaite,et al.  Kauffman's polynomial and alternating links , 1988 .

[18]  K. Murasugi,et al.  Signatures of Covering Links , 1981, Canadian Journal of Mathematics.

[19]  R. A. Litherland,et al.  On the signature of a link , 1978 .

[20]  Kunio Murasugi Jones polynomials and classical conjectures in knot theory , 1987 .

[21]  W. T. Tutte,et al.  A Contribution to the Theory of Chromatic Polynomials , 1954, Canadian Journal of Mathematics.

[22]  L. Rudolph Non-trivial positive braids have positive signature , 1982 .

[23]  V. Turaev a Simple Proof of the Murasugi and Kauffman Theorems on Alternating Links , 1990 .

[24]  K. Murasugi Jones polynomials of periodic links. , 1988 .