Constructive Preference Elicitation by Setwise Max-Margin Learning

In this paper we propose an approach to preference elicitation that is suitable to large configuration spaces beyond the reach of existing state-of-the-art approaches. Our setwise max-margin method can be viewed as a generalization of max-margin learning to sets, and can produce a set of "diverse" items that can be used to ask informative queries to the user. Moreover, the approach can encourage sparsity in the parameter space, in order to favor the assessment of utility towards combinations of weights that concentrate on just few features. We present a mixed integer linear programming formulation and show how our approach compares favourably with Bayesian preference elicitation alternatives and easily scales to realistic datasets.

[1]  Cun-Hui Zhang,et al.  The sparsity and bias of the Lasso selection in high-dimensional linear regression , 2008, 0808.0967.

[2]  Wiebke Kuklys,et al.  Stated choice methods: analysis and application, Jordan J. Louviere, David A. Hensher and Joffre D. Swait, Cambridge University Press, ISBN: 0-521-78830-7 , 2002 .

[3]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS , 1952 .

[4]  Tom Minka,et al.  Expectation Propagation for approximate Bayesian inference , 2001, UAI.

[5]  Craig Boutilier,et al.  Minimax regret based elicitation of generalized additive utilities , 2007, UAI.

[6]  Scott Sanner,et al.  Real-time Multiattribute Bayesian Preference Elicitation with Pairwise Comparison Queries , 2010, AISTATS.

[7]  R. A. Bradley,et al.  Rank Analysis of Incomplete Block Designs: I. The Method of Paired Comparisons , 1952 .

[8]  Craig Boutilier,et al.  Regret-based optimal recommendation sets in conversational recommender systems , 2009, RecSys '09.

[9]  Murray Campbell,et al.  Evaluating multiple attribute items using queries , 2001, EC '01.

[10]  Barry Smyth,et al.  Evaluating compound critiquing recommenders: a real-user study , 2007, EC '07.

[11]  Salvatore Greco,et al.  Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions , 2008, Eur. J. Oper. Res..

[12]  Nello Cristianini,et al.  Learning the Preferences of News Readers with SVM and Lasso Ranking , 2010, AIAI.

[13]  Daphne Koller,et al.  Making Rational Decisions Using Adaptive Utility Elicitation , 2000, AAAI/IAAI.

[14]  Brice Mayag,et al.  Identification of a 2-Additive Bi-Capacity by Using Mathematical Programming , 2013, ADT.

[15]  Krzysztof Z. Gajos,et al.  Preference elicitation for interface optimization , 2005, UIST.

[16]  Craig Boutilier,et al.  Incremental utility elicitation with minimax regret decision criterion , 2003, IJCAI 2003.

[17]  John R. Hauser,et al.  Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis , 2004 .

[18]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[19]  Craig Boutilier,et al.  Optimal Bayesian Recommendation Sets and Myopically Optimal Choice Query Sets , 2010, NIPS.

[20]  Tom Minka,et al.  TrueSkillTM: A Bayesian Skill Rating System , 2006, NIPS.

[21]  Yannis Siskos,et al.  Preference disaggregation: 20 years of MCDA experience , 2001, Eur. J. Oper. Res..

[22]  Andrew P. Sage,et al.  A model of multiattribute decisionmaking and trade-off weight determination under uncertainty , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[23]  José Neves,et al.  Artificial Intelligence Applications and Innovations , 2016, IFIP Advances in Information and Communication Technology.

[24]  Craig Boutilier,et al.  Constraint-based optimization and utility elicitation using the minimax decision criterion , 2006, Artif. Intell..

[25]  Paolo Viappiani,et al.  Preferences in Interactive Systems: Technical Challenges and Case Studies , 2008, AI Mag..

[26]  Craig Boutilier,et al.  A POMDP formulation of preference elicitation problems , 2002, AAAI/IAAI.

[27]  F. B. Vernadat,et al.  Decisions with Multiple Objectives: Preferences and Value Tradeoffs , 1994 .

[28]  Vicenç Torra,et al.  Modeling Decisions: Information Fusion and Aggregation Operators (Cognitive Technologies) , 2006 .

[29]  J. Siskos Assessing a set of additive utility functions for multicriteria decision-making , 1982 .

[30]  Vicenç Torra,et al.  Modeling decisions - information fusion and aggregation operators , 2007 .

[31]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.