Co‐evaporant Induced Crystalline Donor: Acceptor Blends in Organic Solar Cells

Currently, major research efforts are focused on improving the cell effi ciency through optimization of the bulk heterojunction (BHJ) architecture, [ 6 ] a blend fi lm consisting of a mixture of donor ( p -type) component and acceptor ( n -type) component of various organic materials. High-effi ciency OSCs are mostly based on BHJs with a solution-cast blend fi lm of a conjugated polymer as the donor and a small molecule as the acceptor, [ 7–9 ]

[1]  Masahiro Hiramoto,et al.  Near infrared light driven organic p-i-n solar cells incorporating phthalocyanine J-aggregate , 2011 .

[2]  F. Castro,et al.  Organic photovoltaics: principles and techniques for nanometre scale characterization , 2010, Nanotechnology.

[3]  Frederik C. Krebs,et al.  Business, market and intellectual property analysis of polymer solar cells , 2010 .

[4]  K. Leo,et al.  Increase in internal quantum efficiency in small molecular oligothiophene: C60 mixed heterojunction solar cells by substrate heating , 2010 .

[5]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[6]  Vladimir Dyakonov,et al.  Polymer–fullerene bulk heterojunction solar cells , 2010, 1003.0359.

[7]  Yongli Gao,et al.  Aluminum phthalocyanine chloride/C60 organic photovoltaic cells with high open-circuit voltages , 2009 .

[8]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[9]  M. Hiramoto,et al.  Efficient Organic p-i-n Solar Cells Having Very Thick Codeposited i-Layer Consisting of Highly Purified Organic Semiconductors , 2008 .

[10]  Valentin D. Mihailetchi,et al.  Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells , 2007 .

[11]  Daniel Moses,et al.  Method for increasing the photoconductive response in conjugated polymer/fullerene composites , 2006 .

[12]  Kazuhiro Saito,et al.  Realization of Large Open-Circuit Photovoltage in Organic Thin-Film Solar Cells by Controlling Measurement Environment , 2006 .

[13]  M. Yokoyama,et al.  Three-layered organic solar cells incorporating a nanostructure-optimized phthalocyanine:fullerene codeposited interlayer , 2005 .

[14]  Stephen R. Forrest,et al.  A Hybrid Planar–Mixed Molecular Heterojunction Photovoltaic Cell , 2005 .

[15]  S. Forrest,et al.  Controlled growth of a molecular bulk heterojunction photovoltaic cell , 2004 .

[16]  Frederik C. Krebs,et al.  A brief history of the development of organic and polymeric photovoltaics , 2004 .

[17]  Stephen R. Forrest,et al.  Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films , 2003, Nature.

[18]  R. M. Tromp,et al.  Growth dynamics of pentacene thin films , 2001, Nature.

[19]  R. Hashimoto,et al.  Surface migration dynamics of a planar organic molecule studied by pulsed molecular beam scattering , 2000 .

[20]  Theo Siegrist,et al.  Physical vapor growth of organic semiconductors , 1998 .

[21]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[22]  Wang,et al.  Optical absorption and photoluminescence in pristine and photopolymerized C60 solid films. , 1995, Physical review. B, Condensed matter.

[23]  A. McGhie,et al.  Identification of a growth defect in solid C_60 by electron diffraction , 1992 .

[24]  Smith,et al.  Orientational ordering transition in solid C60. , 1991, Physical review letters.

[25]  Hiroshi Fujiwara,et al.  Three‐layered organic solar cell with a photoactive interlayer of codeposited pigments , 1991 .

[26]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[27]  Zhenan Bao,et al.  Solvent additives and their effects on blend morphologies of bulk heterojunctions , 2011 .

[28]  T. Jones,et al.  Thin film properties and surface morphology of metal free phthalocyanine films grown by organic molecular beam deposition , 1999 .