BWR stability analysis with the BNL Engineering Plant Analyzer

March 9, 1989 instability at the LaSalle-2 Power Plant and more than ninety related BWR transients have been simulated on the BNL Engineering Plant Analyzer (EPA). Power peaks were found to be potentially seventeen times greater than the rated power, flow reversal occurs momentarily during large power oscillations, the fuel centerline temperature oscillates between 1,030 and 2,090 K, while the cladding temperature oscillates between 560 and 570 K. The Suppression Pool reaches its specified temperature limit either never or in as little as 4.3 minutes, depending on operator actions and transient scenario. Thermohydraulic oscillations occur at low core coolant flow (both Recirculation Pumps tripped), with sharp axial or redial fission power peaking and with partial loss of feedwater preheating while the feedwater is flow kept high to maintain coolant inventory in the vessel. Effects from BOP system were shown to influence reactor stability strongly through dosed-loop resonance feedback. High feedwater flow and low temperature destabilize the reactor. Low feedwater flow restabilizes the reactor, because of steam condensation and feedwater preheating in the downcomer, which reduces effectively the destabilizing core inlet subcooling. The EPA has been found to be capable of analyzing BWR stability `` shown to be effective for scopingmore » calculations and for supporting accident management.« less