Microbial fuel cell performance of graphitic carbon functionalized porous polysiloxane based ceramic membranes.

[1]  Sang-Eun Oh,et al.  The effect of Nafion membrane fouling on the power generation of a microbial fuel cell , 2020, International Journal of Hydrogen Energy.

[2]  D. Pant,et al.  Assessment of expanded polystyrene as a separator in microbial fuel cell , 2019, Environmental technology.

[3]  M. Kariduraganavar,et al.  Development of novel sulfonic acid functionalized zeolites incorporated composite proton exchange membranes for fuel cell application , 2019, Electrochimica Acta.

[4]  K. Rezwan,et al.  Porous polymer derived ceramic (PDC)-montmorillonite-H3PMo12O40/SiO2 composite membranes for microbial fuel cell (MFC) application , 2018, Ceramics International.

[5]  H. Ngo,et al.  Challenges in the application of microbial fuel cells to wastewater treatment and energy production: A mini review. , 2018, The Science of the total environment.

[6]  R. Machado,et al.  Polymer-Derived Ceramics with engineered mesoporosity: From design to application in catalysis , 2018, Surface and Coatings Technology.

[7]  D. Mohebbi-Kalhori,et al.  Application of layer-by-layer assembled chitosan/montmorillonite nanocomposite as oxygen barrier film over the ceramic separator of the microbial fuel cell , 2018, Electrochimica Acta.

[8]  Xinqun Cheng,et al.  Sol-gel synthesis of preceramic polyphenylsilsesquioxane aerogels and their application toward monolithic porous SiOC ceramics , 2018, Ceramics International.

[9]  Hongwei Zhang,et al.  Microbial fuel cell and membrane bioreactor coupling system: recent trends , 2018, Environmental Science and Pollution Research.

[10]  P. Moharir,et al.  Comparative performance evaluation of novel polystyrene membrane with ultrex as Proton Exchange Membranes in Microbial Fuel Cell for bioelectricity production from food waste. , 2018, Bioresource technology.

[11]  M. Ghangrekar,et al.  Enhancement of bioelectricity generation and algal productivity in microbial carbon-capture cell using low cost coconut shell as membrane separator , 2018 .

[12]  D. Rana,et al.  Polymer Electrolyte Membranes for Microbial Fuel Cells: A Review , 2018 .

[13]  Sheng Wen,et al.  Proton exchange membrane based on chitosan and solvent-free carbon nanotube fluids for fuel cells applications. , 2018, Carbohydrate polymers.

[14]  L. Zhai,et al.  Bulk Polymer-Derived Ceramic Composites of Graphene Oxide , 2018, ACS omega.

[15]  Ravinder Kumar,et al.  Microbial fuel cell is emerging as a versatile technology: a review on its possible applications, challenges and strategies to improve the performances , 2018 .

[16]  K. Rezwan,et al.  The influence of carbon nanotubes and graphene oxide sheets on the morphology, porosity, surface characteristics and thermal and electrical properties of polysiloxane derived ceramics , 2017 .

[17]  A. D. Dobrzańska-Danikiewicz,et al.  Characteristics of multiwalled carbon nanotubes-rhenium nanocomposites with varied rhenium mass fractions , 2017 .

[18]  F. Kang,et al.  Three-dimensional reduced graphene oxide powder for efficient microwave absorption in the S-band (2–4 GHz) , 2017 .

[19]  S. Dharmalingam,et al.  Characterization and performance study of phase inversed Sulfonated Poly Ether Ether Ketone – Silico tungstic composite membrane as an electrolyte for microbial fuel cell applications , 2017 .

[20]  Hasmukh A. Patel,et al.  Superacidity in Nafion/MOF Hybrid Membranes Retains Water at Low Humidity to Enhance Proton Conduction for Fuel Cells. , 2016, ACS applied materials & interfaces.

[21]  M. Wilhelm,et al.  Preparation of novel adsorbents based on combinations of polysiloxanes and sewage sludge to remove pharmaceuticals from aqueous solutions , 2016 .

[22]  Joselito M. Razal,et al.  A New Raman Metric for the Characterisation of Graphene oxide and its Derivatives , 2016, Scientific Reports.

[23]  I. Ieropoulos,et al.  Comprehensive Study on Ceramic Membranes for Low‐Cost Microbial Fuel Cells , 2015, ChemSusChem.

[24]  P. Colombo,et al.  Directionally aligned macroporous SiOC via freeze casting of preceramic polymers , 2015 .

[25]  M. Ghangrekar,et al.  Development of low cost ceramic separator using mineral cation exchanger to enhance performance of microbial fuel cells , 2015 .

[26]  Y. Chu,et al.  Preparation of the graphene oxide (GO)/Nafion composite membrane for the vanadium redox flow battery (VRB) system , 2014 .

[27]  Wanqin Jin,et al.  A facile way to prepare ceramic-supported graphene oxide composite membrane via silane-graft modification , 2014 .

[28]  S. Kondaveeti,et al.  Low-cost separators for enhanced power production and field application of microbial fuel cells (MFCs) , 2014 .

[29]  G. Najafpour,et al.  A review on the effect of proton exchange membranes in microbial fuel cells , 2014 .

[30]  C. A. Ferreira,et al.  Measuring the proton conductivity of ion-exchange membranes using electrochemical impedance spectroscopy and through-plane cell. , 2014, The journal of physical chemistry. B.

[31]  Soumya Pandit,et al.  Graphene Oxide-Impregnated PVA–STA Composite Polymer Electrolyte Membrane Separator for Power Generation in a Single-Chambered Microbial Fuel Cell , 2013 .

[32]  Takeshi Matsui,et al.  Graphene oxide nanosheet with high proton conductivity. , 2013, Journal of the American Chemical Society.

[33]  S. Dharmalingam,et al.  Performance of sulfonated polystyrene–ethylene–butylene–polystyrene membrane in microbial fuel cell for bioelectricity production , 2012 .

[34]  Swee Su Lim,et al.  Sulfonated poly(ether ether ketone)/poly(ether sulfone) composite membranes as an alternative proton exchange membrane in microbial fuel cells , 2012 .

[35]  Q. Ma,et al.  Effect of pyrolysis temperature on the pore structure evolution of polysiloxane-derived ceramics , 2012 .

[36]  Gurpreet Singh,et al.  Synthesis, Characterization, and High Temperature Stability of Si(B)CN‐Coated Carbon Nanotubes Using a Boron‐Modified Poly(ureamethylvinyl)Silazane Chemistry , 2012 .

[37]  I. Lin,et al.  Effects of composition and thermal annealing on the mechanical properties of silicon oxycarbide films , 2012 .

[38]  G. Tao,et al.  Electricity generation in a membrane-less microbial fuel cell with down-flow feeding onto the cathode. , 2011, Bioresource technology.

[39]  Juin-Yih Lai,et al.  Preparation and applications of Nafion-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells , 2010 .

[40]  Jiali Zhang,et al.  Reduction of graphene oxide via L-ascorbic acid. , 2010, Chemical communications.

[41]  Richard M. Dinsdale,et al.  Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode , 2009 .

[42]  J. Atwater,et al.  Oxygen permeation through functionalized hydrophobic tubular ceramic membranes , 2007 .

[43]  S. Stankovich,et al.  Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide , 2007 .

[44]  H. Hamelers,et al.  Effects of membrane cation transport on pH and microbial fuel cell performance. , 2006, Environmental science & technology.

[45]  R. Vaidyanathan,et al.  Carbon‐Nanotube‐Reinforced Polymer‐Derived Ceramic Composites , 2004 .

[46]  Klaus Schulten,et al.  Water and proton conduction through carbon nanotubes as models for biological channels. , 2003, Biophysical journal.

[47]  Elizabeth C. Dickey,et al.  Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites , 2000 .

[48]  G. A. D. Briggs,et al.  Elastic and shear moduli of single-walled carbon nanotube ropes , 1999 .

[49]  Werner Weppner,et al.  Vehicle Mechanism, A New Model for the Interpretation of the Conductivity of Fast Proton Conductors , 1982 .

[50]  M. Hasik,et al.  Generation of meso- and microporous structures by pyrolysis of polysiloxane microspheres and by HF etching of SiOC microspheres , 2018 .

[51]  Pablo Cañizares,et al.  Influence of the ion-exchange membrane on the performance of double-compartment microbial fuel cells , 2018 .

[52]  D. Mathew,et al.  Graphene oxide induced fast curing of amino novolac phthalonitrile , 2015 .

[53]  M. Ghangrekar,et al.  Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. , 2009, Bioresource technology.

[54]  H. Kleebe,et al.  SiOC ceramic with high excess free carbon , 2008 .

[55]  A. E. Greenberg,et al.  Standard methods for the examination of water and wastewater : supplement to the sixteenth edition , 1988 .