On the Habitability and Future Exploration of Ocean Worlds

[1]  H. Weaver,et al.  The Pluto System After New Horizons , 2017, Annual Review of Astronomy and Astrophysics.

[2]  C. German,et al.  Exploring ocean worlds on Earth and beyond , 2017, Nature Geoscience.

[3]  John S. Lewis,et al.  Chemistry of the Planets , 1973 .

[4]  R. Baragiola,et al.  IS THE 3.5 μm INFRARED FEATURE ON ENCELADUS DUE TO HYDROGEN PEROXIDE? , 2009 .

[5]  G. Neukum,et al.  Cassini Observes the Active South Pole of Enceladus , 2006, Science.

[6]  K. Hand,et al.  Astrobiology: Frontier or fiction , 2012, Nature.

[7]  Nacer Chahat,et al.  All-Metal Dual-Frequency RHCP High-Gain Antenna for a Potential Europa Lander , 2018, IEEE Transactions on Antennas and Propagation.

[8]  C. Sotin,et al.  Titan's Interior Structure , 2009 .

[9]  J. Berthelier,et al.  A Schumann-like resonance on Titan driven by Saturn's magnetosphere possibly revealed by the Huygens Probe , 2007 .

[10]  T. Spohn,et al.  Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects , 2006 .

[11]  Brian K. Muirhead Mars Pathfinder flight system integration and test , 1997, 1997 IEEE Aerospace Conference.

[12]  Jeffrey S. Kargel,et al.  Europa's Crust and Ocean: Origin, Composition, and the Prospects for Life , 2000 .

[13]  K. Hand,et al.  KECK II OBSERVATIONS OF HEMISPHERICAL DIFFERENCES IN H2O2 ON EUROPA , 2013, 1303.5895.

[14]  Robert T. Pappalardo,et al.  The origin of domes on Europa: The role of thermally induced compositional diapirism , 2004 .

[15]  W. Seyfried,et al.  Serpentinization and heat generation: constraints from Lost City and Rainbow hydrothermal systems , 2004 .

[16]  Gabriel Tobie,et al.  Powering prolonged hydrothermal activity inside Enceladus , 2017 .

[17]  D. Hunten,et al.  The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe , 2005, Nature.

[18]  R. H. Brown,et al.  Triton's Geyser-Like Plumes: Discovery and Basic Characterization , 1990, Science.

[19]  G. Schubert,et al.  Europa's differentiated internal structure: inferences from two Galileo encounters. , 1997, Science.

[20]  S. Hörst,et al.  Titan's atmosphere and climate , 2017 .

[21]  James Roberts,et al.  Sustainability of a subsurface ocean within Triton's interior , 2012 .

[22]  J. Kasting,et al.  Habitable zones around main sequence stars. , 1993, Icarus.

[23]  J. Goguen,et al.  Io's heat flow from infrared radiometry: 1983–1993 , 1994 .

[24]  P. C. Keenan,et al.  The Perkins catalog of revised MK types for the cooler stars , 1989 .

[25]  J. Saur,et al.  Induction signals from Callisto's ionosphere and their implications on a possible subsurface ocean , 2017 .

[26]  S. Charnoz,et al.  Constraints on Mimas’ interior from Cassini ISS libration measurements , 2014, Science.

[27]  Susana E. Deustua,et al.  Active Cryovolcanism on Europa? , 2017, 1704.04283.

[28]  Rosaly M. C. Lopes,et al.  Cassini Encounters Enceladus: Background and the Discovery of a South Polar Hot Spot , 2006, Science.

[29]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[30]  Luciano Iess,et al.  Gravity Field, Shape, and Moment of Inertia of Titan , 2010, Science.

[31]  L. Prockter,et al.  Evidence for subduction in the ice shell of Europa , 2014 .

[32]  J. Bauer,et al.  Hydrogen Peroxide on Enceladus , 2007 .

[33]  Rosaly M. C. Lopes,et al.  Atmospheric/Exospheric Characteristics of Icy Satellites , 2010 .

[34]  M. Hesse,et al.  Thermal Evolution of the Impact‐Induced Cryomagma Chamber Beneath Occator Crater on Ceres , 2019, Geophysical Research Letters.

[35]  C. Russell,et al.  Europa's magnetic signature: report from Galileo's pass on 19 December 1996. , 1997, Science.

[36]  M. Kivelson,et al.  The Permanent and Inductive Magnetic Moments of Ganymede , 2002 .

[37]  G. Schubert,et al.  Interior composition, structure and dynamics of the Galilean satellites , 2004 .

[38]  Robert E. Johnson,et al.  The Magnetospheric Plasma-driven Evolution of Satellite Atmospheres , 2004 .

[39]  S. Desch,et al.  Aqueous geochemistry in icy world interiors: Equilibrium fluid, rock, and gas compositions, and fate of antifreezes and radionuclides , 2017 .

[40]  Donna L. Shirley,et al.  Mars Exploration Program Strategy: 1995-2020 , 1996 .

[41]  Deborah S. Kelley,et al.  An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N , 2001, Nature.

[42]  Gabriel Tobie,et al.  Tidal dissipation within large icy satellites: Applications to Europa and Titan , 2005 .

[43]  James B Garvin,et al.  Following the water, the new program for Mars exploration. , 2002, Acta astronautica.

[44]  R. Jaumann,et al.  Release of volatiles from a possible cryovolcano from near-infrared imaging of Titan , 2005, Nature.

[45]  Jennifer M. Brown,et al.  Hydrothermal systems in small ocean planets. , 2007, Astrobiology.

[46]  J. Moore,et al.  Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto , 2016, Nature.

[47]  R. T. Pappalardo,et al.  Shear heating as the origin of the plumes and heat flux on Enceladus , 2007, Nature.

[48]  T. Owen,et al.  Results from the Huygens probe on Titan , 2009 .

[49]  E. Bergeron,et al.  PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STIS , 2016, 1609.08215.

[50]  C. Sotin,et al.  Ice-Ocean Exchange Processes in the Jovian and Saturnian Satellites , 2020 .

[51]  T. Phillips,et al.  Using ARM Observations to Evaluate Climate Model Simulations of Land‐Atmosphere Coupling on the U.S. Southern Great Plains , 2017 .

[52]  Suzanne E. Smrekar,et al.  Lunar heat flow: Regional prospective of the Apollo landing sites , 2014 .

[53]  Michael E. Brown,et al.  H2O2 within Chaos Terrain on Europa’s Leading Hemisphere , 2019, The Astronomical Journal.

[54]  W. Ip,et al.  Cassini Ion and Neutral Mass Spectrometer: Enceladus Plume Composition and Structure , 2006, Science.

[55]  D. E. Jennings,et al.  Surface compositions across Pluto and Charon , 2016, Science.

[56]  Paul E. Geissler,et al.  Volcanic Activity on Io During the Galileo Era , 2003 .

[57]  Sascha Kempf,et al.  Ongoing hydrothermal activities within Enceladus , 2015, Nature.

[58]  J. Wisdom,et al.  Tidal heating in Enceladus , 2007 .

[59]  C P McKay,et al.  Urey Prize Lecture: Planetary Evolution and the Origin of Life. , 1991, Icarus.

[60]  William R. Ward,et al.  Formation of the Galilean Satellites: Conditions of Accretion , 2002 .

[61]  John A. Baross,et al.  Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life , 1985, Origins of life and evolution of the biosphere.

[62]  C. T. Russell,et al.  Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto , 1998, Nature.

[63]  Stanley L. Miller,et al.  The Origin and Early Evolution of Life: Prebiotic Chemistry, the Pre-RNA World, and Time , 1996, Cell.

[64]  Mark E. Perry,et al.  Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes , 2017, Science.

[65]  F. G. Carrozzo,et al.  Detection of local H2O exposed at the surface of Ceres , 2016, Science.

[66]  Jeffrey S. Kargel,et al.  Cryovolcanism on Titan: New results from Cassini RADAR and VIMS , 2013 .

[67]  W. Calvin,et al.  Condensed O2 on Europa and Callisto , 2002 .

[68]  D. Stevenson,et al.  Thermal state of an ice shell on Europa , 1989 .

[69]  Joachim Saur,et al.  Orbital apocenter is not a sufficient condition for HST/STIS detection of Europa’s water vapor aurora , 2014, Proceedings of the National Academy of Sciences.

[70]  Dale P. Cruikshank,et al.  Methane on Triton: Physical state and distribution , 1982 .

[71]  W. McKinnon,et al.  Triton’s Surface Age and Impactor Population Revisited in Light of Kuiper Belt Fluxes: Evidence for Small Kuiper Belt Objects and Recent Geological Activity , 1999, astro-ph/9910435.

[72]  C. Russell,et al.  The interior structure of Ceres as revealed by surface topography , 2017 .

[73]  Christopher T. Russell,et al.  Constraints on Ceres' Internal Structure and Evolution From Its Shape and Gravity Measured by the Dawn Spacecraft , 2017 .

[74]  F. G. Carrozzo,et al.  Localized aliphatic organic material on the surface of Ceres , 2017, Science.

[75]  Corrigendum: Streptococcus agalactiae clones infecting humans were selected and fixed through the extensive use of tetracycline , 2015, Nature communications.

[76]  Michael H. Wong,et al.  Radiation effects on the surfaces of the Galilean satellites , 2004 .

[77]  K. Nealson The limits of life on Earth and searching for life on Mars. , 1997, Journal of geophysical research.

[78]  S. Asmar,et al.  The Tides of Titan , 2012, Science.

[79]  G. Kuiper The Magnitude of the Sun, the Stellar Temperature Scale, and Bolometric Corrections. , 1938 .

[80]  C. Sotin,et al.  Analytic theory of Titan’s Schumann resonance: Constraints on ionospheric conductivity and buried water ocean , 2012 .

[81]  M. Neveu,et al.  Evolution of Saturn’s Mid-Sized Moons , 2019, Nature Astronomy.

[82]  E. Shock,et al.  Composition and stability of salts on the surface of Europa and their oceanic origin , 2001 .

[83]  J. Pearl,et al.  High heat flow from Enceladus' south polar region measured using 10–600 cm−1 Cassini/CIRS data , 2011 .

[84]  W. S. Lewis,et al.  Liquid water on Enceladus from observations of ammonia and 40Ar in the plume , 2009, Nature.

[85]  S. Benner,et al.  Is there a common chemical model for life in the universe? , 2004, Current Opinion in Chemical Biology.

[86]  Robert E. Johnson Energetic Charged-Particle Interactions with Atmospheres and Surfaces , 1990 .

[87]  A. Schultz,et al.  Mid-Ocean Ridge Hydrothermal Fluxes and the Chemical Composition of the Ocean , 1996 .

[88]  A. Hayes,et al.  Exposure age of Saturn's A and B rings, and the Cassini Division as suggested by their non-icy material content , 2017 .

[89]  Everett L. Shock,et al.  Principles of geobiochemistry , 2015 .

[90]  T. Lauer,et al.  The geology of Pluto and Charon through the eyes of New Horizons , 2016, Science.

[91]  Pierre Rochette,et al.  The effect of hydrostatic pressure up to 1.61 GPa on the Morin transition of hematite‐bearing rocks: Implications for planetary crustal magnetization , 2015 .

[92]  S. Stein,et al.  Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow , 1994 .

[93]  J. Sutherland Opinion: Studies on the origin of life — the end of the beginning , 2017 .

[94]  C. Martens,et al.  Apparent Minimum Free Energy Requirements for Methanogenic Archaea and Sulfate-Reducing Bacteria in an Anoxic Marine Sediment , 2013 .

[95]  K. Zahnle,et al.  On the negligible surface age of Triton , 2007 .

[96]  W. Martin,et al.  Hydrothermal vents and the origin of life , 2008, Nature Reviews Microbiology.

[97]  K. Hand,et al.  Geophysical controls of chemical disequilibria in Europa , 2016 .

[98]  Randolph L. Kirk,et al.  Hydrocarbon lakes on Titan: Distribution and interaction with a porous regolith , 2008 .

[99]  M. Ćuk,et al.  DYNAMICAL EVIDENCE FOR A LATE FORMATION OF SATURN’S MOONS , 2016, 1603.07071.

[100]  Kenneth E. Hibbard,et al.  Dragonfly: A rotorcraft lander concept for scientific exploration at titan , 2018 .

[101]  H. Hussmann,et al.  Thermal Evolution of Europa's Silicate Interior , 2009 .

[102]  Sarah M. Horst,et al.  Titan's Atmosphere and Climate , 2017, 1702.08611.

[103]  C. Chyba,et al.  Astrobiology: The Study of the Living Universe , 2005 .

[104]  M. C. De Sanctis,et al.  Relict Ocean Worlds: Ceres , 2020 .

[105]  James Charles Granahan,et al.  Non‐water‐ice constituents in the surface material of the icy Galilean satellites from the Galileo near‐infrared mapping spectrometer investigation , 1998 .

[106]  E. Shock,et al.  Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. , 1997, Geochimica et cosmochimica acta.

[107]  T V Johnson,et al.  Organics and other molecules in the surfaces of Callisto and Ganymede. , 1997, Science.

[108]  R E Johnson,et al.  Hydrogen peroxide on the surface of Europa. , 1999, Science.

[109]  Alfred S. McEwen,et al.  Thermal signature, eruption style, and eruption evolution at Pele and Pillan on Io , 2001 .

[110]  S. Desch,et al.  Geochemistry, thermal evolution, and cryovolcanism on Ceres with a muddy ice mantle , 2015 .

[111]  K. V. Damm,et al.  SEAFLOOR HYDROTHERMAL ACTIVITY: BLACK SMOKER CHEMISTRY AND CHIMNEYS , 1990 .

[112]  G. Ballester,et al.  Discovery of gaseous S2 in Io's Pele plume. , 2000, Science.

[113]  Lynda B. M. Ellis,et al.  Microbial Genomics and the Periodic Table , 2004, Applied and Environmental Microbiology.

[114]  J. Goguen,et al.  Methanol on Enceladus , 2009 .

[115]  Daniel Gautier,et al.  Composition of Titan's lower atmosphere and simple surface volatiles as measured by the Cassini‐Huygens probe gas chromatograph mass spectrometer experiment , 2010 .

[116]  F. Neubauer Planetary science: Oceans inside Jupiter's moons , 1998, Nature.

[117]  M. E. Brown,et al.  SALTS AND RADIATION PRODUCTS ON THE SURFACE OF EUROPA , 2013, 1303.0894.

[118]  F. G. Carrozzo,et al.  Distribution of phyllosilicates on the surface of Ceres , 2016, Science.

[119]  C. Russell,et al.  Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. , 2000, Science.

[120]  Bruce Block,et al.  Ion Neutral Mass Spectrometer Results from the First Flyby of Titan , 2005, Science.

[121]  K. Hand,et al.  The Possible Emergence of Life and Differentiation of a Shallow Biosphere on Irradiated Icy Worlds: The Example of Europa , 2017, Astrobiology.

[122]  Roberto Orosei,et al.  Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper , 2007 .

[123]  M. Kivelson,et al.  Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures , 2018 .

[124]  Brian C. Thomas,et al.  A new view of the tree of life , 2016, Nature Microbiology.

[125]  Jean-Baptiste Lully,et al.  The collected works , 1996 .

[126]  F. Postberg,et al.  Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus , 2009, Nature.

[127]  W. R. Thompson,et al.  A search for life on Earth from the Galileo spacecraft , 1993, Nature.

[128]  Kenneth H. Nealson,et al.  Astrobiology and the Potential for Life on Europa , 2009 .

[129]  Thomas M. McCollom,et al.  Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa , 1999 .

[130]  W. Grundy,et al.  Near-infrared spectral monitoring of Triton with IRTF/SpeX II: Spatial distribution and evolution of ices , 2009, 0908.2623.

[131]  Robert E. Johnson,et al.  Energetic charged particle weathering of Saturn's inner satellites , 2012 .

[132]  F. Nimmo,et al.  Shell thickness variations and the long-wavelength topography of Titan , 2010 .

[133]  C. Sotin,et al.  Large Ocean Worlds with High-Pressure Ices , 2020 .

[134]  Christopher T. Russell,et al.  Europa and Callisto: Induced or intrinsic fields in a periodically varying plasma environment , 1999 .

[135]  R. E. Johnson,et al.  Sulfuric acid on Europa and the radiolytic sulfur cycle. , 1999, Science.

[136]  R. A. Jacobson,et al.  Europa's differentiated internal structure: inferences from four Galileo encounters. , 1997, Science.

[137]  R. Yelle,et al.  Origin of oxygen species in Titan's atmosphere , 2008 .

[138]  L. Orgel,et al.  The Origin of Life – How Long did it Take? , 1998, Origins of life and evolution of the biosphere.

[139]  C. Russell,et al.  Identification of a Dynamic Atmosphere at Enceladus with the Cassini Magnetometer , 2006, Science.

[140]  Robert P. Lowell,et al.  Hydrothermal systems on Europa , 2003 .

[141]  W. Ip,et al.  Liquid water on Enceladus from observations of ammonia and 40Ar in the plume , 2009, Nature.

[142]  T. Spohn,et al.  Thermal-orbital evolution of Io and Europa , 2004 .

[143]  JOHN S. Lewis Satellites of the Outer Planets: Their Physical and Chemical Nature , 1971 .

[144]  W. McKinnon Geodynamics of Icy Satellites , 1998 .

[145]  Hauke Hussmann,et al.  Thermal Equilibrium States of Europa's Ice Shell: Implications for Internal Ocean Thickness and Surface Heat Flow , 2002 .

[146]  F. Postberg,et al.  High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus , 2015, Nature Communications.

[147]  Nicolas Fray,et al.  Sublimation of ices of astrophysical interest: A bibliographic review , 2009 .

[148]  Paul D. Feldman,et al.  Transient Water Vapor at Europa’s South Pole , 2014, Science.

[149]  F. Nimmo,et al.  Geophysics and Tidal-Thermal Evolution of Enceladus , 2018 .

[150]  L. Rothschild,et al.  Life in extreme environments , 2001, Nature.

[151]  Christopher F Chyba,et al.  Energy, chemical disequilibrium, and geological constraints on Europa. , 2007, Astrobiology.