Kinetic Flux Profiling Elucidates Two Independent Acetyl-CoA Biosynthetic Pathways in Plasmodium falciparum*

Background: The acetyl-CoA biosynthetic pathways of the malaria parasite are unclear. Results: 13C-Labeling experiments in parasites lacking a functional pyruvate dehydrogenase (PDH) complex show that the PDH does not contribute significantly to the acetyl-CoA pool. Conclusion: The majority of acetyl-CoA biosynthesis in the parasite derives from a PDH-like enzyme and acetyl-CoA synthetase. Significance: The two routes for acetyl-CoA synthesis appear to have separate functions. The malaria parasite Plasmodium falciparum depends on glucose to meet its energy requirements during blood-stage development. Although glycolysis is one of the best understood pathways in the parasite, it is unclear if glucose metabolism appreciably contributes to the acetyl-CoA pools required for tricarboxylic acid metabolism (TCA) cycle and fatty acid biosynthesis. P. falciparum possesses a pyruvate dehydrogenase (PDH) complex that is localized to the apicoplast, a specialized quadruple membrane organelle, suggesting that separate acetyl-CoA pools are likely. Herein, we analyze PDH-deficient parasites using rapid stable-isotope labeling and show that PDH does not appreciably contribute to acetyl-CoA synthesis, tricarboxylic acid metabolism, or fatty acid synthesis in blood stage parasites. Rather, we find that acetyl-CoA demands are supplied through a “PDH-like” enzyme and provide evidence that the branched-chain keto acid dehydrogenase (BCKDH) complex is performing this function. We also show that acetyl-CoA synthetase can be a significant contributor to acetyl-CoA biosynthesis. Interestingly, the PDH-like pathway contributes glucose-derived acetyl-CoA to the TCA cycle in a stage-independent process, whereas anapleurotic carbon enters the TCA cycle via a stage-dependent phosphoenolpyruvate carboxylase/phosphoenolpyruvate carboxykinase process that decreases as the parasite matures. Although PDH-deficient parasites have no blood-stage growth defect, they are unable to progress beyond the oocyst phase of the parasite mosquito stage.

[1]  H. Ginsburg Progress in in silico functional genomics: the malaria Metabolic Pathways database. , 2006, Trends in parasitology.

[2]  A. Vaughan,et al.  Plasmodium pyruvate dehydrogenase activity is only essential for the parasite's progression from liver infection to blood infection , 2010, Molecular microbiology.

[3]  M. Llinás,et al.  New Agilent platform DNA microarrays for transcriptome analysis of Plasmodium falciparum and Plasmodium berghei for the malaria research community , 2012, Malaria Journal.

[4]  A. Vaughan,et al.  Type II fatty acid synthesis is essential only for malaria parasite late liver stage development , 2008, Cellular microbiology.

[5]  G. McFadden,et al.  The malaria parasite Plasmodium falciparum has only one pyruvate dehydrogenase complex, which is located in the apicoplast , 2004, Molecular microbiology.

[6]  J. Rabinowitz,et al.  Metabolome Remodeling during the Acidogenic-Solventogenic Transition in Clostridium acetobutylicum , 2011, Applied and Environmental Microbiology.

[7]  J. Kanaani,et al.  Transport of lactate in Plasmodium falciparum‐infected human erythrocytes , 1991, Journal of cellular physiology.

[8]  Yin-Won Lee,et al.  Functional Analyses of Two Acetyl Coenzyme A Synthetases in the Ascomycete Gibberella zeae , 2011, Eukaryotic Cell.

[9]  D. Soldati-Favre,et al.  Apicomplexan mitochondrial metabolism: a story of gains, losses and retentions. , 2008, Trends in parasitology.

[10]  K. Kirk,et al.  Methionine transport in the malaria parasite Plasmodium falciparum. , 2011, International journal for parasitology.

[11]  D. V. Vander Jagt,et al.  D-lactate production in erythrocytes infected with Plasmodium falciparum. , 1990, Molecular and biochemical parasitology.

[12]  A. Halestrap,et al.  Characterization of the Enhanced Transport of L- and D-Lactate into Human Red Blood Cells Infected with Plasmodium falciparum Suggests the Presence of a Novel Saturable Lactate Proton Cotransporter (*) , 1995, The Journal of Biological Chemistry.

[13]  J. Markley,et al.  rNMR: open source software for identifying and quantifying metabolites in NMR spectra , 2009, Magnetic resonance in chemistry : MRC.

[14]  J. Derisi,et al.  The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum , 2003, PLoS biology.

[15]  Dominique Soldati-Favre,et al.  Versatility in the acquisition of energy and carbon sources by the Apicomplexa , 2010, Biology of the cell.

[16]  T. Mogi,et al.  Diversity in mitochondrial metabolic pathways in parasitic protists Plasmodium and Cryptosporidium. , 2009, Parasitology international.

[17]  F. Zhao,et al.  Extensive lysine acetylation occurs in evolutionarily conserved metabolic pathways and parasite‐specific functions during Plasmodium falciparum intraerythrocytic development , 2013, Molecular microbiology.

[18]  M. Mehta,et al.  Glycolysis in Plasmodium falciparum results in modulation of host enzyme activities. , 2006, Journal of vector borne diseases.

[19]  A. Macleod,et al.  The accumulation of lactic acid and its influence on the growth ofPlasmodium falciparum in synchronized cultures , 1984, In Vitro.

[20]  A. Craig,et al.  Exported Proteins Required for Virulence and Rigidity of Plasmodium falciparum-Infected Human Erythrocytes , 2008, Cell.

[21]  K. Kirk,et al.  Metabolite profiling of the intraerythrocytic malaria parasite Plasmodium falciparum by 1H NMR spectroscopy , 2009, NMR in biomedicine.

[22]  J. Rabinowitz,et al.  Ultrasensitive regulation of anapleurosis via allosteric activation of PEP carboxylase , 2012, Nature chemical biology.

[23]  Michelle F Clasquin,et al.  LC-MS data processing with MAVEN: a metabolomic analysis and visualization engine. , 2012, Current protocols in bioinformatics.

[24]  P. Nguyen-Dinh,et al.  Plasmodium falciparum: stage-specific lactate production in synchronized cultures. , 1982, Experimental parasitology.

[25]  C. Eyers Universal sample preparation method for proteome analysis , 2009 .

[26]  M. Biran,et al.  Acetate produced in the mitochondrion is the essential precursor for lipid biosynthesis in procyclic trypanosomes , 2009, Proceedings of the National Academy of Sciences.

[27]  K. Kirk,et al.  Transport and Metabolism of the Essential Vitamin Pantothenic Acid in Human Erythrocytes Infected with the Malaria ParasitePlasmodium falciparum * , 1998, The Journal of Biological Chemistry.

[28]  T. Gilberger,et al.  Transfection of the human malaria parasite Plasmodium falciparum. , 2004, Methods in molecular biology.

[29]  G. Zhu,et al.  Cryptosporidium parvum Long-Chain Fatty Acid Elongase , 2007, Eukaryotic Cell.

[30]  Y. Fujibayashi,et al.  Tumor uptake of radiolabeled acetate reflects the expression of cytosolic acetyl-CoA synthetase: implications for the mechanism of acetate PET. , 2009, Nuclear medicine and biology.

[31]  P. Wilairat,et al.  Simple and Inexpensive Fluorescence-Based Technique for High-Throughput Antimalarial Drug Screening , 2004, Antimicrobial Agents and Chemotherapy.

[32]  James K. Stoops,et al.  The remarkable structural and functional organization of the eukaryotic pyruvate dehydrogenase complexes , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[33]  E. White,et al.  Liquid chromatography-high resolution mass spectrometry analysis of fatty acid metabolism. , 2011, Analytical chemistry.

[34]  R. Harris,et al.  Role of branched-chain 2-oxo acid dehydrogenase and pyruvate dehydrogenase in 2-oxobutyrate metabolism. , 1986, The Biochemical journal.

[35]  J. Broach,et al.  Nucleotide degradation and ribose salvage in yeast , 2013, Molecular systems biology.

[36]  W. Trager,et al.  Human malaria parasites in continuous culture. , 1976, Science.

[37]  A. Cowman,et al.  Negative selection using yeast cytosine deaminase/uracil phosphoribosyl transferase in Plasmodium falciparum for targeted gene deletion by double crossover recombination. , 2006, Molecular and biochemical parasitology.

[38]  H. Vial,et al.  Glycerophospholipid acquisition in Plasmodium - a puzzling assembly of biosynthetic pathways. , 2010, International journal for parasitology.

[39]  Kellen L. Olszewski,et al.  Central carbon metabolism of Plasmodium parasites. , 2011, Molecular and biochemical parasitology.

[40]  Jun Miao,et al.  Chromatin-Mediated Epigenetic Regulation in the Malaria Parasite Plasmodium falciparum , 2010, Eukaryotic Cell.

[41]  John L Markley,et al.  Metabolite identification via the Madison Metabolomics Consortium Database , 2008, Nature Biotechnology.

[42]  J. Rabinowitz,et al.  Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach , 2008, Nature Protocols.

[43]  T. Mitamura,et al.  Intraerythrocytic Plasmodium falciparum utilize a broad range of serum-derived fatty acids with limited modification for their growth , 2006, Parasitology.

[44]  L. Tilley,et al.  Mitochondrial metabolism of sexual and asexual blood stages of the malaria parasite Plasmodium falciparum , 2013, BMC Biology.

[45]  Irwin W. Sherman,et al.  Malaria : parasite biology, pathogenesis, and protection , 1998 .

[46]  R. Aebersold,et al.  A uniform proteomics MS/MS analysis platform utilizing open XML file formats , 2005, Molecular systems biology.

[47]  M. Mann,et al.  Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. , 2003, Analytical chemistry.

[48]  C. Lambros,et al.  Synchronization of Plasmodium falciparum erythrocytic stages in culture. , 1979, The Journal of parasitology.

[49]  D. Bergel Geigy Scientific Tables , 1991 .

[50]  G. McFadden,et al.  Atypical lipid composition in the purified relict plastid (apicoplast) of malaria parasites , 2013, Proceedings of the National Academy of Sciences.

[51]  David H Perlman,et al.  A Pan-specific Antibody for Direct Detection of Protein Histidine Phosphorylation , 2013, Nature chemical biology.

[52]  H. Ginsburg,et al.  Hexose-monophosphate shunt activity in intact Plasmodium falciparum-infected erythrocytes and in free parasites. , 1994, Molecular and biochemical parasitology.

[53]  Y. Yonekura,et al.  Cytosolic acetyl‐CoA synthetase affected tumor cell survival under hypoxia: the possible function in tumor acetyl‐CoA/acetate metabolism , 2009, Cancer science.

[54]  J. Escalante‐Semerena,et al.  Acetyl-coenzyme A synthetase (AMP forming) , 2004, Cellular and Molecular Life Sciences CMLS.

[55]  John L Markley,et al.  Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra. , 2007, Analytical chemistry.

[56]  L. Reed,et al.  Purification and characterization of branched chain alpha-keto acid dehydrogenase complex of bovine kidney. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[57]  K. Kirk,et al.  Transport of lactate and pyruvate in the intraerythrocytic malaria parasite, Plasmodium falciparum. , 2001, The Biochemical journal.

[58]  R. Harris,et al.  Isolation of rabbit liver branched chain alpha-ketoacid dehydrogenase and regulation by phosphorylation. , 1982, The Journal of biological chemistry.

[59]  R. Nagel,et al.  Glutathione stability and oxidative stress in P. falciparum infection in vitro: responses of normal and G6PD deficient cells. , 1982, Biochemical and biophysical research communications.

[60]  M. Llinás,et al.  Whole-genome analysis of Plasmodium spp. Utilizing a new agilent technologies DNA microarray platform. , 2013, Methods in molecular biology.

[61]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[62]  Kellen L. Olszewski,et al.  Extraction of hydrophilic metabolites from Plasmodium falciparum-infected erythrocytes for metabolomic analysis. , 2013, Methods in molecular biology.

[63]  D. Scott,et al.  The 2‐oxoacid dehydrogenase multi‐enzyme complex of the archaeon Thermoplasma acidophilum − recombinant expression, assembly and characterization , 2007, The FEBS journal.

[64]  Joel S. Freundlich,et al.  The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites. , 2008, Cell host & microbe.

[65]  J. H. Waterborg,et al.  Dynamics of histone acetylation in vivo. A function for acetylation turnover? , 2002, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[66]  W. Martin,et al.  Acetate formation in the energy metabolism of parasitic helminths and protists. , 2010, International journal for parasitology.

[67]  S. Ralph Strange organelles –Plasmodium mitochondria lack a pyruvate dehydrogenase complex , 2004, Molecular microbiology.