Visible Light Mediated Photocatalytic Reduction of CO2 to Non-fossil Fuel and Valuable Products by Polyaniline-TiO2 Nanocomposites

[1]  H. Tashakkorian,et al.  Study of the effect of band gap and photoluminescence on biological properties of polyaniline/CdS QD nanocomposites based on natural polymer , 2021, Scientific reports.

[2]  Hanqing Pan,et al.  Photons to Formate: A Review on Photocatalytic Reduction of CO2 to Formic Acid , 2020, Nanomaterials.

[3]  Seungho Jung,et al.  Application of PANI/TiO2 Composite for Photocatalytic Degradation of Contaminants from Aqueous Solution , 2020, Applied Sciences.

[4]  A. Kar,et al.  Effect of band gap variation and sensitization process of polyaniline (PANI)-TiO2 p-n heterojunction photocatalysts on the enhancement of photocatalytic degradation of toxic methylene blue with UV irradiation , 2020 .

[5]  T. Maniecki,et al.  Photocatalytic Reduction of CO2 Over Me (Pt, Pd, Ni, Cu)/TiO2 Catalysts , 2020, Topics in Catalysis.

[6]  Jiaguo Yu,et al.  Product selectivity of photocatalytic CO2 reduction reactions , 2020 .

[7]  Satnam Singh,et al.  Photodeposition time dependant growth, size and photoactivity of Ag and Cu deposited TiO2 nanocatalyst under solar irradiation , 2019 .

[8]  W. I. Nawawi,et al.  Enhanced photocatalytic decolorization of methyl orange dye and its mineralization pathway by immobilized TiO2/polyaniline , 2019, Research on Chemical Intermediates.

[9]  D. Berk,et al.  Molybdenum doped graphene/TiO 2 hybrid photocatalyst for UV/visible photocatalytic applications , 2018 .

[10]  Vidya Shetty Kodialbail,et al.  Visible light-induced photocatalytic degradation of Reactive Blue-19 over highly efficient polyaniline-TiO2 nanocomposite: a comparative study with solar and UV photocatalysis , 2018, Environmental Science and Pollution Research.

[11]  A. Alshahrie,et al.  Polyaniline as Photocatalytic Promoter in Black Anatase TiO 2 , 2017 .

[12]  Biswajit Saha,et al.  Flexible diode of polyaniline/ITO heterojunction on PET substrate , 2017 .

[13]  H. Hasan,et al.  Advances in Photocatalytic CO2 Reduction with Water: A Review , 2017, Materials.

[14]  R. Andreozzi,et al.  Kinetic modeling of hydrogen generation over nano-Cu(s)/TiO2 catalyst through photoreforming of alcohols , 2017 .

[15]  F. Taghipour,et al.  Recent progress and perspectives in the photocatalytic CO 2 reduction of Ti-oxide-based nanomaterials , 2017 .

[16]  A. Villa,et al.  CO2 photoreduction at high pressure to both gas and liquid products over titanium dioxide , 2017 .

[17]  V. M. Granchak,et al.  Photocatalytic reduction of CO2 using nanostructured Cu2O with foam-like structure , 2016 .

[18]  M. E. Borges,et al.  Photocatalysis with solar energy: Sunlight-responsive photocatalyst based on TiO2 loaded on a natural material for wastewater treatment , 2016 .

[19]  M. Almáši,et al.  Band gap study of polyaniline and polyaniline/MWNT nanocomposites with in situ polymerization method , 2016 .

[20]  I. Abdullah,et al.  Investigation of energy band gap in polymer/ZnO nanocomposites , 2016, Journal of Materials Science: Materials in Electronics.

[21]  Biswajit Saha,et al.  Charge Transport through Polyaniline Incorporated Electrically Conducting Functional Paper , 2016 .

[22]  M. Purkait,et al.  Solar cell driven electrochemical process for the reduction of CO2 to HCOOH on Zn and Sn electrocatalysts , 2016 .

[23]  P. Rajakani,et al.  Electrocatalytic properties of polyaniline–TiO2 nanocomposites , 2015, International Journal of Industrial Chemistry.

[24]  David S Kosson,et al.  Effect of coal combustion fly ash use in concrete on the mass transport release of constituents of potential concern. , 2014, Chemosphere.

[25]  Ying Li,et al.  Understanding the Reaction Mechanism of Photocatalytic Reduction of CO2 with H2O on TiO2-Based Photocatalysts: A Review , 2014 .

[26]  M. Maroto-Valer,et al.  Role of catalyst carriers in CO2 photoreduction over nanocrystalline nickel loaded TiO2-based photocatalysts , 2014 .

[27]  Avelino Corma,et al.  Photocatalytic reduction of CO2 for fuel production: Possibilities and challenges , 2013 .

[28]  V. Vatanpour,et al.  Photoreduction of carbon dioxide in the presence of H2, H2O and CH4 over TiO2 and ZnO photocatalysts , 2013 .

[29]  Jacek K. Stolarczyk,et al.  Photocatalytic reduction of CO2 on TiO2 and other semiconductors. , 2013, Angewandte Chemie.

[30]  P. Jayamurugan,et al.  Synthesis and characterization of TiO2-doped Polyaniline nanocomposites by chemical oxidation method , 2013 .

[31]  M. Liang,et al.  Photocatalytic reduction of carbon dioxide to formic acid, formaldehyde, and methanol using dye-sensitized TiO2 film , 2013 .

[32]  A. Entezami,et al.  Preparation, characterization and photocatalytic activity of TiO2/polyaniline core-shell nanocomposite , 2012, Bulletin of Materials Science.

[33]  N. Dimitrijević,et al.  Dynamics of Interfacial Charge Transfer to Formic Acid, Formaldehyde, and Methanol on the Surface of TiO2 Nanoparticles and Its Role in Methane Production , 2012 .

[34]  V. Patil,et al.  Facile and novel route for preparation of nanostructured polyaniline (PANi) thin films , 2012, Applied Nanoscience.

[35]  V. Patil,et al.  Synthesis and Characterization of Polyaniline:TiO2 Nanocomposites , 2010 .

[36]  Yunfeng Zhu,et al.  Photocatalytic degradation of methyl orange using polythiophene/titanium dioxide composites , 2010 .

[37]  Xiaodong Wu,et al.  Preparation of TiO2/polyaniline nanocomposite from a lyotropic liquid crystalline solution , 2009 .

[38]  W. Feng,et al.  Uniform TiO2–PANI composite capsules and hollow spheres , 2009 .

[39]  Lucie Obalová,et al.  Effect of TiO2 particle size on the photocatalytic reduction of CO2 , 2009 .

[40]  Shahriar Shafiee,et al.  When will fossil fuel reserves be diminished , 2009 .

[41]  J. Gaffney,et al.  The impacts of combustion emissions on air quality and climate - From coal to biofuels and beyond , 2009 .

[42]  A. Gedanken,et al.  Organic–inorganic hybrid materials based on polyaniline/TiO2 nanocomposites for ascorbic acid fuel cell systems , 2008, Nanotechnology.

[43]  G. Cheng,et al.  Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination , 2008 .

[44]  F. Wang,et al.  TiO2/Polyaniline Composites: An Efficient Photocatalyst for the Degradation of Methylene Blue under Natural Light , 2007 .

[45]  P. Liu,et al.  Preparation of PANI–TiO2 nanocomposites and their solid-phase photocatalytic degradation , 2006 .

[46]  N. Sasirekha,et al.  Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide , 2006 .

[47]  Cao Gengyu,et al.  Photocatalytic degradation of organophosphorus pesticides using floating photocatalyst TiO2 · SiO2/beads by sunlight , 2005 .

[48]  Younan Xia,et al.  Camphorsulfonic Acid Fully Doped Polyaniline Emeraldine Salt: Conformations in Different Solvents Studied by an Ultraviolet/Visible/Near-Infrared Spectroscopic Method , 1995 .

[49]  S. Mezyk,et al.  Reduction potential of the carboxyl radical anion in aqueous solutions , 1989 .

[50]  A. Bard,et al.  Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems , 1979 .