Grand challenges for Smoothed Particle Hydrodynamics numerical schemes

[1]  John R. Williams,et al.  An advanced study on discretization-error-based adaptivity in Smoothed Particle Hydrodynamics , 2020 .

[2]  Nikolaus A. Adams,et al.  A weakly compressible SPH method with WENO reconstruction , 2019, J. Comput. Phys..

[3]  Wei Hu,et al.  Modeling heat transfer subject to inhomogeneous Neumann boundary conditions by smoothed particle hydrodynamics and peridynamics , 2019, International Journal of Heat and Mass Transfer.

[4]  José M. Domínguez,et al.  Local uniform stencil (LUST) boundary condition for arbitrary 3-D boundaries in parallel smoothed particle hydrodynamics (SPH) models , 2019, Computers & Fluids.

[5]  Billy L. Edge,et al.  Modeling of wave energy converters by GPUSPH and Project Chrono , 2019, Ocean Engineering.

[6]  Daniel Duque,et al.  A geometric formulation of the Shepard renormalization factor , 2019, Computers & Fluids.

[7]  Salvatore Marrone,et al.  Viscous flow past a cylinder close to a free surface: Benchmarks with steady, periodic and metastable responses, solved by meshfree and mesh-based schemes , 2019, Computers & Fluids.

[8]  Denis Aubry,et al.  Imposition of boundary conditions for elliptic equations in the context of non boundary fitted meshless methods , 2019, Computer Methods in Applied Mechanics and Engineering.

[9]  Abbas Khayyer,et al.  A projection-based particle method with optimized particle shifting for multiphase flows with large density ratios and discontinuous density fields , 2019, Computers & Fluids.

[10]  Furen Ming,et al.  A novel non-reflecting boundary condition for fluid dynamics solved by smoothed particle hydrodynamics , 2018, Journal of Fluid Mechanics.

[11]  J. Dominguez,et al.  Improved relaxation zone method in SPH-based model for coastal engineering applications , 2018, Applied Ocean Research.

[12]  José M. Domínguez,et al.  A versatile algorithm for the treatment of open boundary conditions in Smoothed particle hydrodynamics GPU models , 2018, Computer Methods in Applied Mechanics and Engineering.

[13]  Holger Wendland,et al.  Convergence of the Smoothed Particle Hydrodynamics Method for a Specific Barotropic Fluid Flow: Constructive Kernel Theory , 2018, SIAM J. Math. Anal..

[14]  Joaquim Peiró,et al.  Long duration SPH simulations of sloshing in tanks with a low fill ratio and high stretching , 2018, Computers & Fluids.

[15]  P. Troch,et al.  Coupling methodology for smoothed particle hydrodynamics modelling of non-linear wave-structure interactions , 2018 .

[16]  Y. Imoto,et al.  Unique solvability and stability analysis for incompressible smoothed particle hydrodynamics method , 2018, Computational Particle Mechanics.

[17]  Salvatore Marrone,et al.  Coupled SPH-FV method with net vorticity and mass transfer , 2018, J. Comput. Phys..

[18]  T. Zohdi,et al.  A hybrid Lagrangian Voronoi–SPH scheme , 2017, Computational Particle Mechanics.

[19]  Ricardo B. Canelas,et al.  Extending DualSPHysics with a Differential Variational Inequality: modeling fluid-mechanism interaction , 2018, Applied Ocean Research.

[20]  Benedict D. Rogers,et al.  Incompressible SPH (ISPH) with fast Poisson solver on a GPU , 2018, Comput. Phys. Commun..

[21]  Gabriele Bulian,et al.  Co-simulation of ship motions and sloshing in tanks , 2018 .

[22]  L. Chiron,et al.  Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and robustness considerations , 2018, J. Comput. Phys..

[23]  Ming C. Lin,et al.  An Efficient Hybrid Incompressible SPH Solver with Interface Handling for Boundary Conditions , 2018, Comput. Graph. Forum.

[24]  Abbas Khayyer,et al.  On the state-of-the-art of particle methods for coastal and ocean engineering , 2018 .

[25]  Salvatore Marrone,et al.  Multi-resolution Delta-plus-SPH with tensile instability control: Towards high Reynolds number flows , 2017, Comput. Phys. Commun..

[26]  Abbas Khayyer,et al.  On enhancement of energy conservation properties of projection-based particle methods , 2017 .

[27]  Rui M. L. Ferreira,et al.  Resolved Simulation of a Granular-Fluid Flow with a Coupled SPH-DCDEM Model , 2017 .

[28]  B. Langrand,et al.  Coupled fluid-structure computational methods for aircraft ditching simulations , 2017 .

[29]  David Le Touzé,et al.  An efficient FSI coupling strategy between Smoothed Particle Hydrodynamics and Finite Element methods , 2017, Comput. Phys. Commun..

[30]  A. Colagrossi,et al.  SPH energy conservation for fluid–solid interactions , 2017 .

[31]  A. Colagrossi,et al.  SPH modelling of viscous flow past a circular cylinder interacting with a free surface , 2017 .

[32]  Salvatore Marrone,et al.  The δplus-SPH model: Simple procedures for a further improvement of the SPH scheme , 2017 .

[33]  Hitoshi Gotoh,et al.  Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context , 2017, J. Comput. Phys..

[34]  Steven J. Lind,et al.  High-order Eulerian incompressible smoothed particle hydrodynamics with transition to Lagrangian free-surface motion , 2016, J. Comput. Phys..

[35]  Mauro De Marchis,et al.  A coupled Finite Volume–Smoothed Particle Hydrodynamics method for incompressible flows , 2016 .

[36]  Stéphane Clain,et al.  High-accurate SPH method with Multidimensional Optimal Order Detection limiting , 2016 .

[37]  Mostafa Safdari Shadloo,et al.  Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges , 2016 .

[38]  Borja Servan-Camas,et al.  Time domain simulation of coupled sloshing–seakeeping problems by SPH–FEM coupling , 2016 .

[39]  Dean Hu,et al.  A particle-element contact algorithm incorporated into the coupling methods of FEM-ISPH and FEM-WCSPH for FSI problems , 2016 .

[40]  Salvatore Marrone,et al.  SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms , 2016, J. Comput. Phys..

[41]  Rui M. L. Ferreira,et al.  SPH-DCDEM model for arbitrary geometries in free surface solid-fluid flows , 2016, Comput. Phys. Commun..

[42]  Hitoshi Gotoh,et al.  Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering , 2016 .

[43]  Salvatore Marrone,et al.  Coupling of Smoothed Particle Hydrodynamics with Finite Volume method for free-surface flows , 2016, J. Comput. Phys..

[44]  D. Markauskas,et al.  Comparative study on mesh-based and mesh-less coupled CFD-DEM methods to model particle-laden flow , 2016, 1603.06808.

[45]  Benedict D. Rogers,et al.  Variable resolution for SPH in three dimensions: Towards optimal splitting and coalescing for dynamic adaptivity , 2016 .

[46]  David Le Touzé,et al.  On distributed memory MPI-based parallelization of SPH codes in massive HPC context , 2016, Comput. Phys. Commun..

[47]  Chenguang Huang,et al.  Numerical modeling of dam-break flow impacting on flexible structures using an improved SPH–EBG method , 2016 .

[48]  D. Violeau,et al.  Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future , 2016 .

[49]  S. Gaskin,et al.  SPH-DEM model for free-surface flows containing solids applied to river ice jams , 2016 .

[50]  Corrado Altomare,et al.  Hybridization of the Wave Propagation Model SWASH and the Meshfree Particle Method SPH for Real Coastal Applications , 2015 .

[51]  Nikolaus A. Adams,et al.  Towards consistence and convergence of conservative SPH approximations , 2015, J. Comput. Phys..

[52]  Jose L. Cercos-Pita,et al.  AQUAgpusph, a new free 3D SPH solver accelerated with OpenCL , 2015, Comput. Phys. Commun..

[53]  A. Colagrossi,et al.  Energy balance in the δ-SPH scheme , 2015 .

[54]  Damien Violeau,et al.  Optimal time step for incompressible SPH , 2015, J. Comput. Phys..

[55]  Jean-Christophe Marongiu,et al.  A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid-structure interaction problems with large interface motion , 2015 .

[56]  Manh Hong Duong,et al.  From continuum mechanics to SPH particle systems and back: Systematic derivation and convergence , 2015, 1501.04512.

[57]  David Le Touzé,et al.  Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method , 2014, J. Comput. Phys..

[58]  Michael Dumbser,et al.  A new class of Moving-Least-Squares WENO-SPH schemes , 2014, J. Comput. Phys..

[59]  P. M. Guilcher,et al.  A Coupled SPH-Spectral Method for the Simulation of Wave Train Impacts on a FPSO , 2014 .

[60]  Fabian Spreng,et al.  A local adaptive discretization algorithm for Smoothed Particle Hydrodynamics , 2014, CPM 2014.

[61]  Benedict D. Rogers,et al.  SPH for 3D floating bodies using variable mass particle distribution , 2013 .

[62]  Nikolaus A. Adams,et al.  A transport-velocity formulation for smoothed particle hydrodynamics , 2013, J. Comput. Phys..

[63]  Dirk Roose,et al.  Dynamic particle refinement in SPH: application to free surface flow and non-cohesive soil simulations , 2013 .

[64]  Benedict D. Rogers,et al.  Variable resolution for SPH: A dynamic particle coalescing and splitting scheme , 2013 .

[65]  Dominique Laurence,et al.  Unified semi‐analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method , 2013 .

[66]  Michael Dumbser,et al.  ADER-WENO finite volume schemes with space-time adaptive mesh refinement , 2012, J. Comput. Phys..

[67]  Nikolaus A. Adams,et al.  A generalized wall boundary condition for smoothed particle hydrodynamics , 2012, J. Comput. Phys..

[68]  Damien Violeau,et al.  Fluid Mechanics and the SPH Method: Theory and Applications , 2012 .

[69]  D. Roose,et al.  Dynamic particle refinement in SPH: application to free surface flow and non-cohesive soil simulations , 2012, Computational Mechanics.

[70]  W. Dehnen,et al.  Improving convergence in smoothed particle hydrodynamics simulations without pairing instability , 2012, 1204.2471.

[71]  Benedict D. Rogers,et al.  Wave body interaction in 2D using smoothed particle hydrodynamics (SPH) with variable particle mass , 2012 .

[72]  S. J. Lind,et al.  Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves , 2012, J. Comput. Phys..

[73]  J. Monaghan Smoothed Particle Hydrodynamics and Its Diverse Applications , 2012 .

[74]  A. Colagrossi,et al.  δ-SPH model for simulating violent impact flows , 2011 .

[75]  Daniel J. Price Smoothed particle hydrodynamics and magnetohydrodynamics , 2010, J. Comput. Phys..

[76]  Salvatore Marrone,et al.  Free-surface flows solved by means of SPH schemes with numerical diffusive terms , 2010, Comput. Phys. Commun..

[77]  B. Rogers,et al.  State-of-the-art of classical SPH for free-surface flows , 2010 .

[78]  Rui Xu,et al.  Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach , 2009, J. Comput. Phys..

[79]  A. Colagrossi,et al.  Theoretical considerations on the free-surface role in the smoothed-particle-hydrodynamics model. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  Nathan J. Quinlan,et al.  Extension of the finite volume particle method to viscous flow , 2009, J. Comput. Phys..

[81]  Nikolaus A. Adams,et al.  An incompressible multi-phase SPH method , 2007, J. Comput. Phys..

[82]  Javier Bonet,et al.  Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems , 2007 .

[83]  M. Gómez-Gesteira,et al.  Boundary conditions generated by dynamic particles in SPH methods , 2007 .

[84]  M. Lastiwka,et al.  Truncation error in mesh‐free particle methods , 2006 .

[85]  G. Oger,et al.  Two-dimensional SPH simulations of wedge water entries , 2006, J. Comput. Phys..

[86]  Javier Bonet,et al.  Hamiltonian formulation of the variable-h SPH equations , 2005 .

[87]  J. Trulsen,et al.  Regularized smoothed particle hydrodynamics with improved multi-resolution handling , 2005 .

[88]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[89]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[90]  S. Shao,et al.  INCOMPRESSIBLE SPH METHOD FOR SIMULATING NEWTONIAN AND NON-NEWTONIAN FLOWS WITH A FREE SURFACE , 2003 .

[91]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[92]  Jean-Paul Vila,et al.  ON PARTICLE WEIGHTED METHODS AND SMOOTH PARTICLE HYDRODYNAMICS , 1999 .

[93]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[94]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[95]  Claes Johnson,et al.  Adaptive finite element methods in computational mechanics , 1992 .

[96]  L. Hernquist,et al.  TREESPH: A Unification of SPH with the Hierarchical Tree Method , 1989 .

[97]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[98]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[99]  L. Chiron,et al.  Fast and accurate SPH modelling of 3D complex wall boundaries in viscous and non viscous flows , 2019, Comput. Phys. Commun..

[100]  Hans-Jörg Bauer,et al.  Preprocessing Workflow for the Initialization of SPH Predictions based on Arbitrary CAD Models , 2017 .

[101]  Qing Yang,et al.  Coupled SPH-FVM Simulation within the OpenFOAM Framework☆ , 2015 .

[102]  Damien Violeau,et al.  On the maximum time step in weakly compressible SPH , 2014, J. Comput. Phys..