Efficient Short Signatures from Pairing

Short signature schemes are useful for systems where signatures are typed in by a human or for systems with low-bandwidth channels and/or low-computation power such as PDAs or cell phones. In this paper, a new short signature scheme is proposed. Our scheme is more efficient than Zhang et  al.'s scheme and BLS scheme. Based on the hardness of k-CAA Problem, we provide a rigorous proof for our scheme in the random oracle model.

[1]  Atsuko Miyaji A Message Recovery Signature Scheme Equivalent to DSA over Elliptic Curves , 1996, ASIACRYPT.

[2]  Yi Mu,et al.  A New Short Signature Scheme Without Random Oracles from Bilinear Pairings , 2005, IACR Cryptol. ePrint Arch..

[3]  Yi Mu,et al.  Identity-Based Partial Message Recovery Signatures (or How to Shorten ID-Based Signatures) , 2005, Financial Cryptography.

[4]  Krste Asanovic,et al.  Energy Aware Lossless Data Compression , 2003, MobiSys.

[5]  Hovav Shacham,et al.  Short Signatures from the Weil Pairing , 2001, J. Cryptol..

[6]  Hovav Shacham,et al.  Aggregate and Verifiably Encrypted Signatures from Bilinear Maps , 2003, EUROCRYPT.

[7]  Rainer A. Rueppel,et al.  A new signature scheme based on the DSA giving message recovery , 1993, CCS '93.

[8]  Reihaneh Safavi-Naini,et al.  An Efficient Signature Scheme from Bilinear Pairings and Its Applications , 2004, Public Key Cryptography.

[9]  Paulo S. L. M. Barreto,et al.  Efficient Algorithms for Pairing-Based Cryptosystems , 2002, CRYPTO.

[10]  Mihir Bellare,et al.  Random oracles are practical: a paradigm for designing efficient protocols , 1993, CCS '93.

[11]  Raylin Tso,et al.  Efficient ID-Based Digital Signatures with Message Recovery , 2007, CANS.

[12]  Silvio Micali,et al.  A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks , 1988, SIAM J. Comput..

[13]  Rainer A. Rueppel,et al.  Message Recovery for Signature Schemes Based on the Discrete Logarithm Problem , 1994, EUROCRYPT.

[14]  Dan Boneh,et al.  Short Signatures Without Random Oracles , 2004, EUROCRYPT.

[15]  Yi Mu,et al.  Certificateless Signature Revisited , 2007, ACISP.

[16]  Mihir Bellare,et al.  Multi-signatures in the plain public-Key model and a general forking lemma , 2006, CCS '06.

[17]  Rainer A. Rueppel,et al.  Message Recovery for Signature Schemes Based on the Discrete Logarithm Problem , 1996, Des. Codes Cryptogr..

[18]  M. Kasahara,et al.  A New Traitor Tracing , 2002, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[19]  Tatsuaki Okamoto,et al.  A Signature Scheme with Message Recovery as Secure as Discrete Logarithm , 1999, ASIACRYPT.

[20]  Matthew K. Franklin,et al.  Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.