Searches for cosmic-string gravitational-wave bursts in Mock LISA Data
暂无分享,去创建一个
[1] David Huard,et al. PyMC: Bayesian Stochastic Modelling in Python. , 2010, Journal of statistical software.
[2] P. Graff,et al. Classifying LISA gravitational wave burst signals using Bayesian evidence , 2009, 0911.0288.
[3] P. Sarin,et al. First LIGO search for gravitational wave bursts from cosmic (super)strings , 2009 .
[4] B Johnson,et al. An upper limit on the stochastic gravitational-wave background of cosmological origin , 2009, Nature.
[5] B. Krishnan,et al. Targeted search for continuous gravitational waves: Bayesian versus maximum-likelihood statistics , 2009, 0907.2569.
[6] Harmonic Gravitational Wave Spectra of Cosmic String Loops in the Galaxy , 2009, 0904.1052.
[7] X. Siemens,et al. Gravitational Waves from Broken Cosmic Strings: The Bursts and the Beads , 2009, 0903.4686.
[8] Characterizing the Gravitational Wave Signature from Cosmic String Cusps , 2008, 0812.1590.
[9] F. Feroz,et al. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.
[10] P. Graff,et al. The Mock LISA Data Challenges: from challenge 3 to challenge 4 , 2008, 0806.2110.
[11] M. Vallisneri,et al. Sensitivity and parameter-estimation precision for alternate LISA configurations , 2007, 0710.4369.
[12] M. Vallisneri. Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects , 2007, gr-qc/0703086.
[13] F. Jenet,et al. Upper Bounds on the Low-Frequency Stochastic Gravitational Wave Background from Pulsar Timing Observations: Current Limits and Future Prospects , 2006, astro-ph/0609013.
[14] M. Vallisneri. Geometric time delay interferometry , 2005, gr-qc/0504145.
[15] B. Schutz,et al. Generalized F-statistic : Multiple detectors and multiple gravitational wave pulsars , 2005, gr-qc/0504011.
[16] M. Vallisneri. Synthetic LISA: Simulating time delay interferometry in a model LISA , 2004, gr-qc/0407102.
[17] J. Polchinski,et al. Cosmic superstrings II , 2004 .
[18] C. Cutler,et al. Confusion Noise from LISA Capture Sources , 2004, gr-qc/0409010.
[19] S. Larson,et al. The LISA optimal sensitivity , 2002, gr-qc/0209039.
[20] Cosmic string production towards the end of brane inflation , 2002, hep-th/0204074.
[21] C. Hogan,et al. Estimating stochastic gravitational wave backgrounds with the Sagnac calibration , 2001, astro-ph/0104266.
[22] T. Damour,et al. Gravitational wave bursts from cusps and kinks on cosmic strings , 2001, gr-qc/0104026.
[23] Jun S. Liu,et al. Monte Carlo strategies in scientific computing , 2001 .
[24] T. Damour,et al. Gravitational wave bursts from cosmic strings , 2000, Physical review letters.
[25] Nelson Christensen,et al. Markov chain Monte Carlo methods for Bayesian gravitational radiation data analysis , 1998 .
[26] B. Schutz,et al. Data analysis of gravitational-wave signals from spinning neutron stars. I. The signal and its detection , 1998, gr-qc/9804014.
[27] C. Cutler. Angular resolution of the LISA gravitational wave detector , 1997, gr-qc/9703068.
[28] Some Topics on General Relativity and Gravitational Radiation , 1997 .
[29] B. Allen. The Stochastic Gravity-Wave Background: Sources and Detection , 1996, gr-qc/9604033.
[30] Flanagan,et al. Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.
[31] Smith. Algorithm to search for gravitational radiation from coalescing binaries. , 1987, Physical review. D, Particles and fields.
[32] E. P. S. Shellard,et al. Cosmic Strings and Other Topological Defects , 1995 .
[33] J. Hartigan. Clustering Algorithms , 1975 .