The WiggleZ Dark Energy Survey: constraining the evolution of Newton's constant using the growth rate of structure

We constrain the evolution of Newton's constant using the growth rate of large-scale structure measured by the WiggleZ Dark Energy Survey in the redshift range 0.1 < z < 0.9. We use this data in two ways. Firstly we constrain the matter density of the Universe, Ωm (assuming General Relativity), and use this to construct a diagnostic to detect the presence of an evolving Newton's constant. Secondly we directly measure the evolution of Newton's constant, Geff, that appears in Modified Gravity theories, without assuming General Relativity to be true. The novelty of these approaches are that, contrary to other methods, they do not require knowledge of the expansion history of the Universe, H(z), making them model independent tests. Our constraints for the second derivative of Newton's constant at the present day, assuming it is slowly evolving as suggested by Big Bang Nucleosynthesis constraints, using the WiggleZ data is eff(t0) = −1.19 ± 0.95·10−20 h2 yr−2, where h is defined via H0 = 100 h km s−1 Mpc−1, while using both the WiggleZ and the Sloan Digital Sky Survey Luminous Red Galaxy (SDSS LRG) data is eff(t0) = −3.6 ± 6.8·10−21 h2 yr−2, both being consistent with General Relativity. Finally, our constraint for the rms mass fluctuation σ8 using the WiggleZ data is σ8 = 0.75 ± 0.08, while using both the WiggleZ and the SDSS LRG data σ8 = 0.77 ± 0.07, both in good agreement with the latest measurements from the Cosmic Microwave Background radiation.

[1]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: measuring the cosmic expansion history using the Alcock-Paczynski test and distant supernovae , 2011, 1108.2637.

[2]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift z=0.9 , 2011, 1104.2948.

[3]  W. Percival,et al.  Interpreting large-scale redshift-space distortion measurements , 2011, 1102.1014.

[4]  R. Nichol,et al.  THE CLUSTERING OF MASSIVE GALAXIES AT z ∼ 0.5 FROM THE FIRST SEMESTER OF BOSS DATA , 2010, 1010.4915.

[5]  S. Mukohyama,et al.  Density perturbations in general modified gravitational theories , 2010, 1006.0281.

[6]  S. Tsujikawa Modified gravity models of dark energy , 2010, 1101.0191.

[7]  S. Tsujikawa,et al.  f(R) Theories , 2010, Living reviews in relativity.

[8]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[9]  Karl Glazebrook,et al.  The WiggleZ Dark Energy Survey: survey design and first data release , 2009, 0911.4246.

[10]  J. Vanderplas,et al.  FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS , 2009, 0908.4274.

[11]  A. Mazumdar,et al.  Newton's constant in f(R,R_munuR^munu,Box R) theories of gravity and constraints from BBN , 2009, 0902.1185.

[12]  P. Astier,et al.  Dark-energy constraints and correlations with systematics from CFHTLS weak lensing, SNLS supernovae Ia and WMAP5 ⋆ , 2008, 0810.5129.

[13]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[14]  L. Perivolaropoulos,et al.  Testing Lambda CDM with the Growth Function delta(a): Current Constraints , 2007, 0710.1092.

[15]  S. Tsujikawa Matter density perturbations and effective gravitational constant in modified gravity models of dark energy , 2007, 0705.1032.

[16]  T. Kitching,et al.  On model selection forecasting, Dark Energy and modified gravity , 2007, astro-ph/0703191.

[17]  L. Perivolaropoulos,et al.  Tension and systematics in the Gold06 SnIa data set , 2006, astro-ph/0612653.

[18]  L. Perivolaropoulos,et al.  Limits of extended quintessence , 2006, astro-ph/0611238.

[19]  L. Perivolaropoulos,et al.  Crossing the phantom divide: theoretical implications and observational status , 2006, astro-ph/0610092.

[20]  A. Starobinsky,et al.  Scalar–tensor models of normal and phantom dark energy , 2006, astro-ph/0606287.

[21]  L. Perivolaropoulos,et al.  Evolving Newton's constant, extended gravity theories, and Snia data analysis , 2006, astro-ph/0602053.

[22]  S. Capozziello,et al.  Dark Energy: the equation of state description versus scalar-tensor or modified gravity , 2005, hep-th/0512118.

[23]  W. Percival Cosmological structure formation in a homogeneous dark energy background , 2005, astro-ph/0508156.

[24]  C. Bambi,et al.  The Response of primordial abundances to a general modification of G(N) and/or of the early Universe expansion rate , 2005, astro-ph/0503502.

[25]  S. Carroll,et al.  Cosmology of generalized modified gravity models , 2004, Physical Review D.

[26]  D. Easson MODIFIED GRAVITATIONAL THEORIES AND COSMIC ACCELERATION , 2004 .

[27]  A. Borowiec,et al.  Accelerated cosmological models in Ricci squared gravity , 2004, hep-th/0407090.

[28]  S. Nojiri,et al.  Modified Gravity with ln R Terms and Cosmic Acceleration , 2003, hep-th/0308176.

[29]  R. Woodard,et al.  Letter: The Force of Gravity from a Lagrangian Containing Inverse Powers of the Ricci Scalar , 2003, astro-ph/0308114.

[30]  D. Torres Quintessence, superquintessence, and observable quantities in Brans-Dicke and nonminimally coupled theories , 2002, astro-ph/0204504.

[31]  J. Uzan,et al.  Cosmological observations in scalar-tensor quintessence , 2001, astro-ph/0107386.

[32]  T. Fearn The Jackknife , 2000 .

[33]  Y. Fujii Quintessence, scalar-tensor theories, and non-Newtonian gravity , 1999, gr-qc/9911064.

[34]  N. Bartolo,et al.  Scalar tensor gravity and quintessence , 1999, hep-ph/9908521.

[35]  C. Baccigalupi,et al.  Extended quintessence , 1999, Physical Review D.

[36]  J. Uzan Cosmological scaling solutions of nonminimally coupled scalar fields , 1999, gr-qc/9903004.

[37]  P. Steinhardt,et al.  Cluster Abundance Constraints for Cosmological Models with a Time-varying, Spatially Inhomogeneous Energy Component with Negative Pressure , 1998 .

[38]  A. Starobinsky,et al.  How to determine an effective potential for a variable cosmological term , 1998, astro-ph/9810431.

[39]  P. Steinhardt,et al.  Cluster Abundance Constraints on Quintessence Models , 1998, astro-ph/9804015.

[40]  Waga,et al.  Decaying Lambda cosmologies and power spectrum. , 1994, Physical review. D, Particles and fields.

[41]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[42]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[43]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .