The WiggleZ Dark Energy Survey: constraining the evolution of Newton's constant using the growth rate of structure
暂无分享,去创建一个
[1] Scott Croom,et al. The WiggleZ Dark Energy Survey: measuring the cosmic expansion history using the Alcock-Paczynski test and distant supernovae , 2011, 1108.2637.
[2] Scott Croom,et al. The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift z=0.9 , 2011, 1104.2948.
[3] W. Percival,et al. Interpreting large-scale redshift-space distortion measurements , 2011, 1102.1014.
[4] R. Nichol,et al. THE CLUSTERING OF MASSIVE GALAXIES AT z ∼ 0.5 FROM THE FIRST SEMESTER OF BOSS DATA , 2010, 1010.4915.
[5] S. Mukohyama,et al. Density perturbations in general modified gravitational theories , 2010, 1006.0281.
[6] S. Tsujikawa. Modified gravity models of dark energy , 2010, 1101.0191.
[7] S. Tsujikawa,et al. f(R) Theories , 2010, Living reviews in relativity.
[8] Alexander S. Szalay,et al. Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.
[9] Karl Glazebrook,et al. The WiggleZ Dark Energy Survey: survey design and first data release , 2009, 0911.4246.
[10] J. Vanderplas,et al. FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS , 2009, 0908.4274.
[11] A. Mazumdar,et al. Newton's constant in f(R,R_munuR^munu,Box R) theories of gravity and constraints from BBN , 2009, 0902.1185.
[12] P. Astier,et al. Dark-energy constraints and correlations with systematics from CFHTLS weak lensing, SNLS supernovae Ia and WMAP5 ⋆ , 2008, 0810.5129.
[13] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[14] L. Perivolaropoulos,et al. Testing Lambda CDM with the Growth Function delta(a): Current Constraints , 2007, 0710.1092.
[15] S. Tsujikawa. Matter density perturbations and effective gravitational constant in modified gravity models of dark energy , 2007, 0705.1032.
[16] T. Kitching,et al. On model selection forecasting, Dark Energy and modified gravity , 2007, astro-ph/0703191.
[17] L. Perivolaropoulos,et al. Tension and systematics in the Gold06 SnIa data set , 2006, astro-ph/0612653.
[18] L. Perivolaropoulos,et al. Limits of extended quintessence , 2006, astro-ph/0611238.
[19] L. Perivolaropoulos,et al. Crossing the phantom divide: theoretical implications and observational status , 2006, astro-ph/0610092.
[20] A. Starobinsky,et al. Scalar–tensor models of normal and phantom dark energy , 2006, astro-ph/0606287.
[21] L. Perivolaropoulos,et al. Evolving Newton's constant, extended gravity theories, and Snia data analysis , 2006, astro-ph/0602053.
[22] S. Capozziello,et al. Dark Energy: the equation of state description versus scalar-tensor or modified gravity , 2005, hep-th/0512118.
[23] W. Percival. Cosmological structure formation in a homogeneous dark energy background , 2005, astro-ph/0508156.
[24] C. Bambi,et al. The Response of primordial abundances to a general modification of G(N) and/or of the early Universe expansion rate , 2005, astro-ph/0503502.
[25] S. Carroll,et al. Cosmology of generalized modified gravity models , 2004, Physical Review D.
[26] D. Easson. MODIFIED GRAVITATIONAL THEORIES AND COSMIC ACCELERATION , 2004 .
[27] A. Borowiec,et al. Accelerated cosmological models in Ricci squared gravity , 2004, hep-th/0407090.
[28] S. Nojiri,et al. Modified Gravity with ln R Terms and Cosmic Acceleration , 2003, hep-th/0308176.
[29] R. Woodard,et al. Letter: The Force of Gravity from a Lagrangian Containing Inverse Powers of the Ricci Scalar , 2003, astro-ph/0308114.
[30] D. Torres. Quintessence, superquintessence, and observable quantities in Brans-Dicke and nonminimally coupled theories , 2002, astro-ph/0204504.
[31] J. Uzan,et al. Cosmological observations in scalar-tensor quintessence , 2001, astro-ph/0107386.
[32] T. Fearn. The Jackknife , 2000 .
[33] Y. Fujii. Quintessence, scalar-tensor theories, and non-Newtonian gravity , 1999, gr-qc/9911064.
[34] N. Bartolo,et al. Scalar tensor gravity and quintessence , 1999, hep-ph/9908521.
[35] C. Baccigalupi,et al. Extended quintessence , 1999, Physical Review D.
[36] J. Uzan. Cosmological scaling solutions of nonminimally coupled scalar fields , 1999, gr-qc/9903004.
[37] P. Steinhardt,et al. Cluster Abundance Constraints for Cosmological Models with a Time-varying, Spatially Inhomogeneous Energy Component with Negative Pressure , 1998 .
[38] A. Starobinsky,et al. How to determine an effective potential for a variable cosmological term , 1998, astro-ph/9810431.
[39] P. Steinhardt,et al. Cluster Abundance Constraints on Quintessence Models , 1998, astro-ph/9804015.
[40] Waga,et al. Decaying Lambda cosmologies and power spectrum. , 1994, Physical review. D, Particles and fields.
[41] B. Efron. The jackknife, the bootstrap, and other resampling plans , 1987 .
[42] B. Efron,et al. The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .
[43] David M. Miller,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .