Triphenylene-Derived Electron Acceptors and Donors on Ag(111): Formation of Intermolecular Charge-Transfer Complexes with Common Unoccupied Molecular States.

Over the past years, ultrathin films consisting of electron donating and accepting molecules have attracted increasing attention due to their potential usage in optoelectronic devices. Key parameters for understanding and tuning their performance are intermolecular and molecule-substrate interactions. Here, the formation of a monolayer thick blend of triphenylene-based organic donor and acceptor molecules from 2,3,6,7,10,11-hexamethoxytriphenylene (HAT) and 1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile (HATCN), respectively, on a silver (111) surface is reported. Scanning tunneling microscopy and spectroscopy, valence and core level photoelectron spectroscopy, as well as low-energy electron diffraction measurements are used, complemented by density functional theory calculations, to investigate both the electronic and structural properties of the homomolecular as well as the intermixed layers. The donor molecules are weakly interacting with the Ag(111) surface, while the acceptor molecules show a strong interaction with the substrate leading to charge transfer and substantial buckling of the top silver layer and of the adsorbates. Upon mixing acceptor and donor molecules, strong hybridization occurs between the two different molecules leading to the emergence of a common unoccupied molecular orbital located at both the donor and acceptor molecules. The donor acceptor blend studied here is, therefore, a compelling candidate for organic electronics based on self-assembled charge-transfer complexes.

[1]  R. Yadav,et al.  Molecule-based monochromatic and polychromatic OLEDs with wet-process feasibility , 2018 .

[2]  B. Meyer,et al.  Binary supramolecular networks of bridged triphenylamines with different substituents and identical scaffolds. , 2018, Chemical communications.

[3]  C. Becker,et al.  Growth of Dihydrotetraazapentacene Layers on Cu(110) , 2018 .

[4]  A. Kara,et al.  Adsorption of thiophene on transition metal surfaces with the inclusion of van der Waals effects , 2018 .

[5]  M. Antonietti,et al.  Hexaazatriphenylene doped carbon nitrides—Biomimetic photocatalyst with superior oxidation power , 2017 .

[6]  Cheuk‐Lam Ho,et al.  Molecular/polymeric metallaynes and related molecules: Solar cell materials and devices , 2017, Coordination Chemistry Reviews.

[7]  A. D. Parga,et al.  Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces , 2017 .

[8]  Daoben Zhu,et al.  Organic Donor-Acceptor Complexes as Novel Organic Semiconductors. , 2017, Accounts of chemical research.

[9]  R. Paolesse,et al.  Porphyrinoids for Chemical Sensor Applications. , 2017, Chemical reviews.

[10]  A. Gourdon,et al.  Bicomponent Supramolecular Architectures at the Vacuum-Solid Interface. , 2017, Chemical reviews.

[11]  Kieron Burke,et al.  Understanding band gaps of solids in generalized Kohn–Sham theory , 2016, Proceedings of the National Academy of Sciences.

[12]  Jamil Tahir-Kheli,et al.  Resolution of the Band Gap Prediction Problem for Materials Design. , 2016, The journal of physical chemistry letters.

[13]  A. Verdini,et al.  Molecular-Level Realignment in Donor–Acceptor Bilayer Blends on Metals , 2016 .

[14]  J. Ortega,et al.  Multi‐Component Organic Layers on Metal Substrates , 2016, Advanced materials.

[15]  P. Franzmann,et al.  Over-Oxidation as the Key Step in the Mechanism of the MoCl5-Mediated Dehydrogenative Coupling of Arenes. , 2016, Angewandte Chemie.

[16]  Siegfried R. Waldvogel,et al.  Überoxidation als Schlüsselschritt im Mechanismus der MoCl5‐ vermittelten dehydrierenden Arenkupplung , 2016 .

[17]  U. Meinhardt,et al.  Cyano-Functionalized Triarylamines on Coinage Metal Surfaces: Interplay of Intermolecular and Molecule-Substrate Interactions. , 2016, Chemistry.

[18]  A. Kara,et al.  Role of Long-Range Interactions for the Structure and Energetics of Olympicene Radical Adsorbed on Au(111) and Pt(111) Surfaces , 2015 .

[19]  Wei Chen,et al.  Rational design of two-dimensional molecular donor-acceptor nanostructure arrays. , 2015, Nanoscale.

[20]  A. Kara,et al.  Insight into the Effect of Long Range Interactions for the Adsorption of Benzene on Transition Metal (110) Surfaces , 2015 .

[21]  J. Ortega,et al.  Spectroscopic fingerprints of work-function-controlled phthalocyanine charging on metal surfaces. , 2014, ACS nano.

[22]  J. M. García‐Lastra,et al.  Asymmetric Response toward Molecular Fluorination in Binary Copper−Phthalocyanine/Pentacene Assemblies , 2014 .

[23]  E Goiri,et al.  Self-assembly of bicomponent molecular monolayers: adsorption height changes and their consequences. , 2014, Physical review letters.

[24]  A. Giglia,et al.  Tuning the Work Function of Graphene-on-Quartz with a High Weight Molecular Acceptor , 2014 .

[25]  U. Meinhardt,et al.  Cyano‐Functionalized Triarylamines on Au(111): Competing Intermolecular versus Molecule/Substrate Interactions , 2014 .

[26]  Jinlong Yang,et al.  Energy level realignment in weakly interacting donor-acceptor binary molecular networks. , 2014, ACS nano.

[27]  A. Kara,et al.  Trends in Adsorption Characteristics of Organic Molecules on Transition Metal Surfaces: Role of Surface Chemistry and Van Der Waals Interactions , 2013 .

[28]  D. J. Mowbray,et al.  Understanding Charge Transfer in Donor-Acceptor/Metal Systems: A Combined Theoretical and Experimental Study , 2013, 1308.5277.

[29]  D. J. Mowbray,et al.  Understanding energy-level alignment in donor-acceptor/metal interfaces from core-level shifts. , 2013, ACS nano.

[30]  A. Kara,et al.  Effect of van der Waals Interactions on the Adsorption of Olympicene Radical on Cu(111): Characteristics of Weak Physisorption versus Strong Chemisorption , 2013 .

[31]  Frédéric Chérioux,et al.  1D and 3D surface-assisted self-organization , 2012 .

[32]  A. Gloskovskii,et al.  Charge transfer in the novel donor-acceptor complexes tetra- and hexamethoxypyrene with tetracyanoquinodimethane studied by HAXPES , 2012 .

[33]  D. J. Mowbray,et al.  Supramolecular Environment-Dependent Electronic Properties of Metal–Organic Interfaces. , 2012 .

[34]  Feng Yan,et al.  Organic Thin‐Film Transistors for Chemical and Biological Sensing , 2012, Advanced materials.

[35]  N. Koch,et al.  Tuning hole-injection barriers at organic/metal interfaces exploiting the orientation of a molecular acceptor interlayer , 2011 .

[36]  M. Baumgarten,et al.  The role of energy level matching in organic solar cells-Hexaazatriphenylene hexacarbonitrile as transparent electron transport material , 2011 .

[37]  Yutaka Wakayama,et al.  Solid-state reactions in binary molecular assemblies of F₁₆CuPc and pentacene. , 2011, ACS nano.

[38]  W. Goddard,et al.  Accurate Band Gaps for Semiconductors from Density Functional Theory , 2011 .

[39]  S. Nepijko,et al.  Orbital-resolved partial charge transfer from the methoxy groups of substituted pyrenes in complexes with tetracyanoquinodimethane--a NEXAFS study. , 2010, Journal of the American Chemical Society.

[40]  M. Huth,et al.  Formation of an intermolecular charge-transfer compound in UHV codeposited tetramethoxypyrene and tetracyanoquinodimethane , 2010, 1008.4722.

[41]  S. Nepijko,et al.  Electronic structure of large disc-type donors and acceptors. , 2010, Physical chemistry chemical physics : PCCP.

[42]  J. Pflaum,et al.  Tunable two-dimensional binary molecular networks. , 2010, Small.

[43]  A. Arnau,et al.  Hydrogen-bonding fingerprints in electronic States of two-dimensional supramolecular assemblies. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[44]  Mohamed M. Ahmida,et al.  Synthesis, mesomorphism and electronic properties of nonaflate and cyano-substituted pentyloxy and 3-methylbutyloxy triphenylenes , 2009 .

[45]  Kai Wu,et al.  Two-dimensional molecular porous networks constructed by surface assembling , 2009 .

[46]  B. Doyle,et al.  Customized Electronic Coupling in Self‐Assembled Donor–Acceptor Nanostructures , 2009 .

[47]  D. Bowler,et al.  Chemical accuracy for the van der Waals density functional , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[48]  Gregor Schwartz,et al.  White organic light-emitting diodes with fluorescent tube efficiency , 2009, Nature.

[49]  William R. Salaneck,et al.  Energy‐Level Alignment at Organic/Metal and Organic/Organic Interfaces , 2009 .

[50]  B. Doyle,et al.  Balancing Intermolecular and Molecule–Substrate Interactions in Supramolecular Assemblies , 2009 .

[51]  N. Koch,et al.  "Soft" metallic contact to isolated C60 molecules. , 2008, Nano letters.

[52]  M. Prato,et al.  Trimodular engineering of linear supramolecular miniatures on Ag(111) surfaces controlled by complementary triple hydrogen bonds. , 2008, Angewandte Chemie.

[53]  A. Kahn,et al.  Improving charge injection in organic thin-film transistors with thiol-based self-assembled monolayers , 2008 .

[54]  P. Wood,et al.  Dipolar C[triple-bond]N...C[triple-bond]N interactions in organic crystal structures: database analysis and calculation of interaction energies. , 2008, Acta crystallographica. Section B, Structural science.

[55]  Shunichi Fukuzumi,et al.  Photofunctional nanomaterials composed of multiporphyrins and carbon-based π-electron acceptors , 2008 .

[56]  A. Arnau,et al.  Formation of dispersive hybrid bands at an organic-metal interface. , 2008, Physical review letters.

[57]  H. Dosch,et al.  2D supramolecular self-assembly of binary organic monolayers. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[58]  J. Gómez‐Herrero,et al.  WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.

[59]  J. Brédas,et al.  Charge transport properties in discotic liquid crystals: a quantum-chemical insight into structure-property relationships. , 2004, Journal of the American Chemical Society.

[60]  N. Oxtoby,et al.  Controlling molecular deposition and layer structure with supramolecular surface assemblies , 2003, Nature.

[61]  Edward A. Mcgehee,et al.  Complementary C3-symmetric donor-acceptor components: cocrystal structure and control of mesophase stability. , 2003, Journal of the American Chemical Society.

[62]  Cherie R. Kagan,et al.  Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors , 1999, Science.

[63]  K. Seki,et al.  ENERGY LEVEL ALIGNMENT AND INTERFACIAL ELECTRONIC STRUCTURES AT ORGANIC/METAL AND ORGANIC/ORGANIC INTERFACES , 1999 .

[64]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[65]  Gilles Horowitz,et al.  Organic Field‐Effect Transistors , 1998 .

[66]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[67]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[68]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[69]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[70]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[71]  John P. Ferraris,et al.  Electron transfer in a new highly conducting donor-acceptor complex , 1973 .

[72]  G. Whitesides,et al.  Noncovalent Synthesis: Using Physical-Organic Chemistry To Make Aggregates , 1995 .

[73]  A. W. Czarnik,et al.  Improved synthesis of 1,4,5,8,9,12-hexaazatriphenylenehexacarboxylic acid , 1994 .

[74]  M. Hanack,et al.  A High Yield Easy Method for the Preparation of Alkoxy-Substituted Triphenylenes , 1994 .

[75]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .