On the Formation of Double Neutron Stars in the Milky Way: Influence of Key Parameters

The detection of gravitational wave events has stimulated theoretical modeling of the formation and evolution of double compact objects (DCOs). However, even for the most studied isolated binary evolution channel, there exist large uncertainties in the input parameters and treatments of the binary evolution process. So far, double neutron stars (DNSs) are the only DCOs for which direct observations are available through traditional electromagnetic astronomy. In this work, we adopt a population synthesis method to investigate the formation and evolution of Galactic DNSs. We construct 324 models for the formation of Galactic DNSs, taking into account various possible combinations of critical input parameters and processes such as mass transfer efficiency, supernova type, common envelope efficiency, neutron star kick velocity, and pulsar selection effect. We employ Bayesian analysis to evaluate the adopted models by comparing with observations. We also compare the expected DNS merger rate in the galaxy with that inferred from the known Galactic population of pulsar-neutron star systems. Based on these analyses we derive the favorable range of the aforementioned key parameters.

[1]  D. Chattopadhyay,et al.  Binary neutron star populations in the Milky Way , 2023, 2305.04955.

[2]  J. Fuller,et al.  White dwarf binaries suggest a common envelope efficiency α ∼ 1/3 , 2022, Monthly Notices of the Royal Astronomical Society.

[3]  A. Dotter,et al.  X-ray luminosity function of high-mass X-ray binaries: Studying the signatures of different physical processes using detailed binary evolution calculations , 2022, Astronomy & Astrophysics.

[4]  Hai-liang Chen,et al.  The Common Envelope Evolution Outcome—A Case Study on Hot Subdwarf B Stars , 2022, The Astrophysical Journal.

[5]  M. Schreiber,et al.  Close detached white dwarf + brown dwarf binaries: Further evidence for low values of the common envelope efficiency , 2022, Monthly Notices of the Royal Astronomical Society.

[6]  Q. Chu,et al.  Formation and Evolution of Binary Neutron Stars: Mergers and Their Host Galaxies , 2021, Monthly Notices of the Royal Astronomical Society.

[7]  Wen-Cong Chen,et al.  Novel Model of an Ultra-stripped Supernova Progenitor of a Double Neutron Star , 2021, 2110.02979.

[8]  Y. Bouffanais,et al.  The Cosmic Evolution of Binary Black Holes in Young, Globular and Nuclear Star Clusters: Rates, Masses, Spins and Mixing Fractions , 2021, 2109.06222.

[9]  I. Mandel,et al.  Rates of compact object coalescences , 2021, Living Reviews in Relativity.

[10]  Cnrs,et al.  Revisiting the Galactic Double Neutron Star merger and LIGO detection rates , 2021, 2107.13307.

[11]  S. Stevenson,et al.  Modelling neutron star–black hole binaries: future pulsar surveys and gravitational wave detectors , 2020, 2011.13503.

[12]  P. Podsiadlowski,et al.  Pre-supernova evolution, compact-object masses, and explosion properties of stripped binary stars , 2020, Astronomy & Astrophysics.

[13]  I. Mandel,et al.  Simple recipes for compact remnant masses and natal kicks , 2020, 2006.08360.

[14]  R. Haas,et al.  A Magnetar Engine for Short GRBs and Kilonovae , 2020, The Astrophysical Journal.

[15]  I. Mandel,et al.  Be X-ray binaries in the SMC as indicators of mass-transfer efficiency , 2020, 2003.00195.

[16]  Y. Shao,et al.  On the Formation of PSR J1640+2224: A Neutron Star Born Massive? , 2020, The Astrophysical Journal.

[17]  M. Mclaughlin,et al.  An Updated Galactic Double Neutron Star Merger Rate Based on Radio Pulsar Populations , 2020, Research Notes of the AAS.

[18]  S. D. Mink,et al.  Properties of OB star−black hole systems derived from detailed binary evolution models , 2019, Astronomy & Astrophysics.

[19]  N. Langer,et al.  Effects of Close Binary Evolution on the Main-sequence Morphology of Young Star Clusters , 2019, The Astrophysical Journal.

[20]  S. Stevenson,et al.  Modelling double neutron stars: radio and gravitational waves , 2019, Monthly Notices of the Royal Astronomical Society.

[21]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[22]  S. Ransom,et al.  Upgraded Giant Metrewave Radio Telescope timing of NGC 1851A: a possible millisecond pulsar - neutron star system. , 2019, Monthly notices of the Royal Astronomical Society.

[23]  G. Desvignes,et al.  Radio emission from a pulsar’s magnetic pole revealed by general relativity , 2019, Science.

[24]  P. Cowperthwaite,et al.  The Optical Afterglow of GW170817: An Off-axis Structured Jet and Deep Constraints on a Globular Cluster Origin , 2019, The Astrophysical Journal.

[25]  I. Mandel,et al.  Double Neutron Star Populations and Formation Channels , 2019, The Astrophysical Journal.

[26]  A. Zezas,et al.  Double neutron star formation: merger times, systemic velocities, and travel distances , 2019, Monthly Notices of the Royal Astronomical Society.

[27]  S. Chatterjee,et al.  Millisecond Pulsars and Black Holes in Globular Clusters , 2019, The Astrophysical Journal.

[28]  M. Mclaughlin,et al.  Future Prospects for Ground-based Gravitational-wave Detectors: The Galactic Double Neutron Star Merger Rate Revisited , 2018, The Astrophysical Journal.

[29]  Y. Shao,et al.  On the Role of Supernova Kicks in the Formation of Galactic Double Neutron Star Systems , 2018, The Astrophysical Journal.

[30]  J. García-Bellido,et al.  Black holes, gravitational waves and fundamental physics: a roadmap , 2018, Classical and Quantum Gravity.

[31]  Jim W. Barrett,et al.  On the formation history of Galactic double neutron stars , 2018, Monthly Notices of the Royal Astronomical Society.

[32]  A. J. Ford,et al.  The Green Bank North Celestial Cap Pulsar Survey. III. 45 New Pulsar Timing Solutions , 2018, The Astrophysical Journal.

[33]  Y. Shao,et al.  Black hole/pulsar binaries in the Galaxy , 2018, 1804.06014.

[34]  J. Eldridge,et al.  Neutron star kicks – II. Revision and further testing of the conservation of momentum ‘kick’ model , 2018, Monthly Notices of the Royal Astronomical Society.

[35]  X. Siemens,et al.  PALFA Discovery of a Highly Relativistic Double Neutron Star Binary , 2018, 1802.01707.

[36]  M. Kramer,et al.  Progenitors of gravitational wave mergers: binary evolution with the stellar grid-based code ComBinE , 2018, Monthly Notices of the Royal Astronomical Society.

[37]  M. Chruslinska,et al.  The origin of the first neutron star – neutron star merger , 2017, Astronomy & Astrophysics.

[38]  M. Mclaughlin,et al.  Pulsar J1411+2551: A Low-mass Double Neutron Star System , 2017, 1711.09804.

[39]  S. Burke-Spolaor,et al.  The High Time Resolution Universe Pulsar Survey - XIII. PSR J1757-1854, the most accelerated binary pulsar , 2017, 1711.07697.

[40]  A. Poelarends,et al.  Electron Capture Supernovae from Close Binary Systems , 2017, 1710.11143.

[41]  J. Vink Winds from stripped low-mass Helium stars and Wolf-Rayet stars , 2017, 1710.02010.

[42]  J. Klencki,et al.  Double neutron stars: merger rates revisited , 2017, 1708.07885.

[43]  D. Champion,et al.  Formation of Double Neutron Star Systems , 2017, 1706.09438.

[44]  J. Lattanzio,et al.  Super-AGB Stars and their Role as Electron Capture Supernova Progenitors , 2017, Publications of the Astronomical Society of Australia.

[45]  T. Bulik,et al.  On the likelihood of detecting gravitational waves from Population III compact object binaries , 2016, 1612.01524.

[46]  Y. Shao,et al.  NONCONSERVATIVE MASS TRANSFER IN MASSIVE BINARIES AND THE FORMATION OF WOLF–RAYET+O BINARIES , 2016, 1610.04307.

[47]  T. Piran,et al.  Formation of double neutron star systems as implied by observations , 2015, 1510.03111.

[48]  L. Rossi nigo: A Numerical Integrator of Galactic Orbits , 2015, Astron. Comput..

[49]  N. Langer,et al.  Ultra-stripped supernovae: progenitors and fate , 2015, 1505.00270.

[50]  I. Ribas,et al.  On the formation and evolution of the first Be star in a black hole binary MWC 656 , 2015, 1504.03146.

[51]  J. Lombardi,et al.  Recombination energy in double white dwarf formation , 2015, 1503.02750.

[52]  C Affeldt,et al.  Advanced LIGO , 2014, 1411.4547.

[53]  I. Ribas,et al.  A Be-type star with a black-hole companion , 2014, Nature.

[54]  R. Izzard,et al.  Theoretical uncertainties of the Type Ia supernova rate , 2014, 1401.2895.

[55]  Chunglee Kim,et al.  Implications of PSR J0737-3039B for the Galactic NS-NS binary merger rate , 2013, 1308.4676.

[56]  A. Jorissen,et al.  Critically-rotating accretors and non-conservative evolution in Algols , 2013, 1306.1348.

[57]  D. Lorimer,et al.  On the detectability of eccentric binary pulsars , 2013, 1302.4914.

[58]  Chris L. Fryer,et al.  Common envelope evolution: where we stand and how we can move forward , 2012, The Astronomy and Astrophysics Review.

[59]  U. Southampton,et al.  Is the common envelope ejection efficiency a function of the binary parameters , 2011, 1106.4741.

[60]  B. Gansicke,et al.  Post-common-envelope binaries from SDSS. IX: Constraining the common-envelope efficiency , 2010, 1006.1621.

[61]  Kun Jia,et al.  The binding energy parameter for common envelope evolution , 2010, 1004.4957.

[62]  C. Tout,et al.  Spin angular momentum evolution of the long‐period Algols , 2010, 1003.4392.

[63]  T. Bulik,et al.  Population synthesis of double neutron stars , 2009, 0903.3538.

[64]  J. Lasota,et al.  Evolutionary models of short-period soft X-ray transients: comparison with observations , 2008, 0802.4375.

[65]  J. Hurley,et al.  Populating the Galaxy with low‐mass X‐ray binaries , 2006, astro-ph/0605080.

[66]  P. Podsiadlowski,et al.  Double‐core evolution and the formation of neutron star binaries with compact companions , 2006, astro-ph/0602510.

[67]  V. Kaspi,et al.  Birth and Evolution of Isolated Radio Pulsars , 2005, astro-ph/0512585.

[68]  A. Zezas,et al.  Compact Object Modeling with the StarTrack Population Synthesis Code , 2005, astro-ph/0511811.

[69]  D. Lai,et al.  Neutron Star Kicks in Isolated and Binary Pulsars: Observational Constraints and Implications for Kick Mechanisms , 2005, astro-ph/0509484.

[70]  N. Langer,et al.  Constraining the mass transfer in massive binaries through progenitor evolution models of Wolf-Rayet+O binaries , 2005, astro-ph/0504242.

[71]  S. Rappaport,et al.  The Effects of Binary Evolution on the Dynamics of Core Collapse and Neutron Star Kicks , 2003, astro-ph/0309588.

[72]  R. Manchester,et al.  The Australia Telescope National Facility Pulsar Catalogue , 2003, astro-ph/0309219.

[73]  T. Tauris,et al.  Galactic distribution of merging neutron stars and black holes – prospects for short gamma-ray burst progenitors and LIGO/VIRGO , 2003, astro-ph/0303227.

[74]  S. Rappaport,et al.  On the formation and evolution of black hole binaries , 2002, astro-ph/0207153.

[75]  C. Tout,et al.  Evolution of binary stars and the effect of tides on binary populations , 2002, astro-ph/0201220.

[76]  E. Pfahl,et al.  Evolutionary Sequences for Low- and Intermediate-Mass X-Ray Binaries , 2001, astro-ph/0107261.

[77]  F. Camilo,et al.  The Parkes multi-beam pulsar survey - I. Observing and data analysis systems, discovery and timing of 100 pulsars , 2001, astro-ph/0106522.

[78]  Medicine,et al.  Mass-loss predictions for O and B stars as a function of metallicity , 2001, astro-ph/0101509.

[79]  P. Eggleton,et al.  A Complete Survey of Case A Binary Evolution with Comparison to Observed Algol-type Systems , 2000, astro-ph/0009258.

[80]  T. Tauris,et al.  Formation of Millisecond Pulsars with Heavy White Dwarf Companions: Extreme Mass Transfer on Subthermal Timescales , 2000, The Astrophysical journal.

[81]  V. Kalogera Donor Stars in Black Hole X-Ray Binaries , 1999, astro-ph/9903417.

[82]  R. Manchester,et al.  On the Evolution of Pulsar Beams , 1998 .

[83]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[84]  C. Flynn,et al.  Kinematics of the outer stellar halo , 1996, astro-ph/9603106.

[85]  G. Brown Neutron star accretion and binary pulsar formation , 1995 .

[86]  H. Ritter,et al.  The line of death, the line of birth , 1994 .

[87]  G. Gilmore,et al.  The distribution of low-mass stars in the Galactic disc , 1993 .

[88]  A. Tutukov,et al.  The merger rate of neutron star and black hole binaries , 1993 .

[89]  E. Phinney The Rate of Neutron Star Binary Mergers in the Universe: Minimal Predictions for Gravity Wave Detectors , 1991 .

[90]  T. Piran,et al.  Neutron Star and Black Hole Binaries in the Galaxy , 1991 .

[91]  Helen M. Johnston,et al.  On the detectability of pulsars in close binary systems , 1991 .

[92]  K. Nomoto Evolution of 8-10 solar mass stars toward electron capture supernovae. I - Formation of electron-degenerate O + NE + MG cores. , 1984 .

[93]  R. Webbink Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .

[94]  H. Abt Normal and abnormal binary frequencies , 1983 .

[95]  J. Taylor DISCOVERY OF A PULSAR IN A BINARY SYSTEM , 1975 .

[96]  OUP accepted manuscript , 2022, Monthly Notices of the Royal Astronomical Society.

[97]  Accepted for publication in the Astrophysical Journal A New Look at the Binary Characteristics of Massive Stars , 2007 .

[98]  M. Ramer,et al.  THE COSMIC COALESCENCE RATES FOR DOUBLE NEUTRON STAR BINARIES , 2004 .

[99]  Chunglee Kim,et al.  The Probability Distribution of Binary Pulsar Coalescence Rates. I. Double Neutron Star Systems in the Galactic Field , 2003 .