Generalized event structures and probabilities
暂无分享,去创建一个
[1] Ron Wright. THE STATE OF THE PENTAGON A NONCLASSICAL EXAMPLE , 1978 .
[2] Josef Tkadlec. Greechie Diagrams of Small Quantum Logics with Small State Spaces , 1998 .
[3] I. Pitowsky,et al. George Boole's ‘Conditions of Possible Experience’ and the Quantum Puzzle , 1994, The British Journal for the Philosophy of Science.
[4] Lucien Hardy,et al. Probability theories in general and quantum theory in particular , 2003 .
[5] Cristian S. Calude,et al. Strong Kochen-Specker theorem and incomputability of quantum randomness , 2012, Physical Review A.
[6] J. D. M. Wright. GLEASON'S THEOREM AND ITS APPLICATIONS , 1995 .
[7] P. Dirac. Principles of Quantum Mechanics , 1982 .
[8] E. Specker,et al. The Problem of Hidden Variables in Quantum Mechanics , 1967 .
[9] I. Pitowsky,et al. Betting on the Outcomes of Measurements: A Bayesian Theory of Quantum Probability , 2002, quant-ph/0208121.
[10] E. Specker. DIE LOGIK NICHT GLEICHZEITIG ENTSC HEIDBARER AUSSAGEN , 1960 .
[11] Sylvia Pulmannová,et al. Orthomodular structures as quantum logics , 1991 .
[12] Itamar Pitowsky,et al. Correlation polytopes: Their geometry and complexity , 1991, Math. Program..
[13] A. Cabello. Experimentally testable state-independent quantum contextuality. , 2008, Physical review letters.
[14] A. Dvurecenskij. Gleason's Theorem and Its Applications , 1993 .
[15] Reck,et al. Experimental realization of any discrete unitary operator. , 1994, Physical review letters.
[16] Cristian S. Calude,et al. A variant of the Kochen-Specker theorem localising value indefiniteness , 2015, 1503.01985.
[17] Cristian S. Calude,et al. Value-indefinite observables are almost everywhere , 2013, 1309.7188.
[18] A. Gleason. Measures on the Closed Subspaces of a Hilbert Space , 1957 .
[19] Itamar Pitowsky,et al. From George Boole To John Bell — The Origins of Bell’s Inequality , 1989 .
[20] I. Pitowsky. Infinite and finite Gleason’s theorems and the logic of indeterminacy , 1998 .
[21] F. Gonseth,et al. DIE LOGIK NICHT GLEICHZEITIG ENTSCHEIDBARER AUSSAGEN , 1990 .
[22] G. Boole. XV. On the Theory of probabilities , Proceedings of the Royal Society of London.
[23] J. Bell. On the Problem of Hidden Variables in Quantum Mechanics , 1966 .
[24] Ladislav Beran,et al. Orthomodular Lattices: Algebraic Approach , 1985 .
[25] K. Svozil. Contexts in Quantum, Classical and Partition Logic , 2006, quant-ph/0609209.
[26] G. Krenn,et al. Stronger-Than-Quantum Correlations , 1995, quant-ph/9503010.
[27] S. Popescu. Nonlocality beyond quantum mechanics , 2014, Nature Physics.
[28] Josef Tkadlec,et al. Greechie diagrams, nonexistence of measures in quantum logics, and Kochen–Specker‐type constructions , 1996 .
[29] Richard J. Greechie,et al. Orthomodular Lattices Admitting No States , 1971 .
[30] J. VonNeumann. Mathematische Grundlagen der Quantenmechanik , 1932 .
[31] J. Neumann. Mathematical Foundations of Quantum Mechanics , 1955 .
[32] K. Svozil,et al. Optimal tests of quantum nonlocality , 2000, quant-ph/0011060.
[33] A. Peres. An experimental test for Gleason's theorem , 1992 .
[34] Ron Wright. Generalized urn models , 1990 .
[35] J. Neumann,et al. The Logic of Quantum Mechanics , 1936 .
[36] Karl Svozil,et al. Non-contextual chocolate balls versus value indefinite quantum cryptography , 2014, Theor. Comput. Sci..
[37] Andrei Khrennikov,et al. CHSH Inequality: Quantum Probabilities as Classical Conditional Probabilities , 2014, 1406.4886.
[38] Karl Svozil,et al. Quantum scholasticism: On quantum contexts, counterfactuals, and the absurdities of quantum omniscience , 2007, Inf. Sci..
[39] Mirko Navara,et al. The Pasting Constructions for Orthomodular Posets , 1991 .
[40] George Boole,et al. An Investigation of the Laws of Thought: Frontmatter , 2009 .
[41] A. Cabello,et al. Bell-Kochen-Specker theorem: A proof with 18 vectors , 1996, quant-ph/9706009.
[42] Itamar Pitowsky. Quantum Mechanics as a Theory of Probability , 2006 .
[43] Cristian S. Calude,et al. On the Unpredictability of Individual Quantum Measurement Outcomes , 2014, Fields of Logic and Computation II.
[44] K. Svozil. Unscrambling the Quantum Omelette , 2012, 1206.6024.
[45] K. Svozil. Logical Equivalence Between Generalized Urn Models and Finite Automata , 2002, quant-ph/0209136.