Enzyme Technology: History and Current Trends

[1]  Uwe T Bornscheuer,et al.  Strategies for the discovery and engineering of enzymes for biocatalysis. , 2013, Current opinion in chemical biology.

[2]  P. Buckel,et al.  Expression of Pseudomonas fluorescens D-galactose dehydrogenase in E. coli. , 1981, Gene.

[3]  N. Grubhofer,et al.  Modifizierte Ionenaustauscher als spezifische Adsorbentien , 2004, Naturwissenschaften.

[4]  Klaus Buchholz,et al.  Highlights in Biocatalysis – Historical Landmarks and Current Trends , 2005 .

[5]  Joerg H. Schrittwieser,et al.  Multi-Enzymatic Cascade Reactions: Overview and Perspectives , 2011 .

[6]  E. Fischer Untersuchungen Über Kohlenhydrate und Fermente (1884–1908) , 2022 .

[7]  J. Ewers,et al.  Synthese von verbindungen der cellulose mit eiweißstoffen , 1949 .

[8]  Andreas Schmid,et al.  Direct Terminal Alkylamino‐Functionalization via Multistep Biocatalysis in One Recombinant Whole‐Cell Catalyst , 2013 .

[9]  Manfred T Reetz,et al.  Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions. , 2011, Angewandte Chemie.

[10]  Seung-Pyo Hong,et al.  Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica , 2013, Nature Biotechnology.

[11]  David Weiner,et al.  An Enzyme Library Approach to Biocatalysis: Development of Nitrilases for Enantioselective Production of Carboxylic Acid Derivatives , 2002 .

[12]  R. Neumeister Bemerkungen zu Eduard Buchner's Mittheilungen über »Zymase« , 1897 .

[13]  Jun Ogawa,et al.  Industrial microbial enzymes: their discovery by screening and use in large-scale production of useful chemicals in Japan. , 2002, Current opinion in biotechnology.

[14]  A. Böck,et al.  The penicillin acylase from Escherichia coli ATCC11105 consists of two dissimilar subunits , 1983 .

[15]  G. Huisman,et al.  Engineering the third wave of biocatalysis , 2012, Nature.

[16]  Andreas S. Bommarius,et al.  Biocatalysis: BOMMARIUS: BIOCATALYSIS O-BK , 2005 .

[17]  A. Burgard,et al.  Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. , 2011, Nature chemical biology.

[18]  Ulrich Schörken,et al.  Lipid biotechnology: Industrially relevant production processes , 2009 .

[19]  J. H. Edwards,et al.  Nitrilase-Catalysed Desymmetrisation of 3-Hydroxyglutaronitrile: Preparation of a Statin Side-Chain Intermediate , 2006 .

[20]  A. Borchert,et al.  Improved biocatalyst effectiveness by controlled immobilization of enzymes , 1984, Biotechnology and bioengineering.

[21]  O. White,et al.  Environmental Genome Shotgun Sequencing of the Sargasso Sea , 2004, Science.

[22]  A. Halpern,et al.  The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific , 2007, PLoS biology.

[23]  U. Bornscheuer,et al.  Cascade catalysis--strategies and challenges en route to preparative synthetic biology. , 2015, Chemical communications.

[24]  U. Bornscheuer Can synthetic biology and metabolic engineering contribute to the microbial production of lipids and oleochemicals , 2011 .

[25]  T. Seto,et al.  Distribution and substrate specificity of benzylpenicillin acylase. , 1963, Applied microbiology.

[26]  U. Bornscheuer,et al.  Multistep enzymatic synthesis of long-chain α,ω-dicarboxylic and ω-hydroxycarboxylic acids from renewable fatty acids and plant oils. , 2013, Angewandte Chemie.

[27]  M. Burk,et al.  Creation of a productive, highly enantioselective nitrilase through gene site saturation mutagenesis (GSSM). , 2003, Journal of the American Chemical Society.

[28]  Nicholas J Turner,et al.  Artificial concurrent catalytic processes involving enzymes. , 2015, Chemical communications.

[29]  Eric Mathur,et al.  Exploring Nitrilase Sequence Space for Enantioselective Catalysis , 2004, Applied and Environmental Microbiology.

[30]  S. W. Carleysmith,et al.  Kinetic behavior of immobilized Penicillin acylase , 1980 .

[31]  I. Silman,et al.  Water-insoluble derivatives of enzymes, antigens, and antibodies. , 1966, Annual review of biochemistry.

[32]  Z. Cohen,et al.  Microbial and algal oils: Do they have a future for biodiesel or as commodity oils? , 2008 .

[33]  U. Bornscheuer,et al.  Microbial Synthesis of Medium-Chain α,ω-Dicarboxylic Acids and ω-Aminocarboxylic Acids from Renewable Long-Chain Fatty Acids , 2014 .

[34]  H. Stone,et al.  The importance of sensory analysis for the evaluation of quality , 1991 .

[35]  E. Bünning,et al.  Das Aktionsspektrum des Lichteinflusses auf die Keimung von Farnsporen , 2004, Naturwissenschaften.

[36]  A. Bruggink Synthesis of β-Lactam Antibiotics , 2001 .

[37]  Karen Robins,et al.  Rational assignment of key motifs for function guides in silico enzyme identification. , 2010, Nature chemical biology.

[38]  D. Baltimore Viral RNA-dependent DNA Polymerase: RNA-dependent DNA Polymerase in Virions of RNA Tumour Viruses , 1970, Nature.

[39]  Aman A Desai,et al.  Sitagliptin manufacture: a compelling tale of green chemistry, process intensification, and industrial asymmetric catalysis. , 2011, Angewandte Chemie.

[40]  I. Lehman,et al.  Enzymic synthesis of deoxyribonucleic acid. , 1956, Biochimica et biophysica acta.

[41]  J. Collins,et al.  Cloning of the Penicillin G-Acylase Gene of Escherichia Coli ATCC 11105 on Multicopy Plasmids , 1980 .

[42]  Isabel Oroz‐Guinea,et al.  Enzyme catalysed tandem reactions. , 2013, Current Opinion in Chemical Biology.

[43]  U. Bornscheuer,et al.  Enzymatic degradation of (ligno)cellulose. , 2014, Angewandte Chemie.

[44]  C. Nakamura,et al.  Metabolic engineering for the microbial production of 1,3-propanediol. , 2003, Current opinion in biotechnology.

[45]  S. Mizutani,et al.  Viral RNA-dependent DNA Polymerase: RNA-dependent DNA Polymerase in Virions of Rous Sarcoma Virus , 1970, Nature.

[46]  G. Rolinson,et al.  Formation of 6-Aminopenicillanic Acid from Penicillin by Enzymatic Hydrolysis , 1960, Nature.

[47]  W. Aehle,et al.  Zooming in on metagenomics: molecular microdiversity of Subtilisin Carlsberg in soil. , 2012, Journal of molecular biology.

[48]  Albert A. de Graaf,et al.  Pathway Analysis and Metabolic Engineering in Corynebacterium glutamicum , 2000, Biological chemistry.

[49]  K. Mullis The unusual origin of the polymerase chain reaction. , 1990, Scientific American.

[50]  K. Gillert,et al.  Serologisch spezifische Adsorbentien , 2004, Naturwissenschaften.

[51]  T. K. Ghose Measurement of cellulase activities , 1987 .

[52]  Stanley N Cohen,et al.  DNA cloning: A personal view after 40 years , 2013, Proceedings of the National Academy of Sciences.

[53]  Eduard Buchner,et al.  Ueber zellenfreie Gährung , 1898 .

[54]  Karen Robins,et al.  Enzymatic Asymmetric Synthesis of Enantiomerically Pure Aliphatic, Aromatic and Arylaliphatic Amines with (R)‐Selective Amine Transaminases , 2011 .

[55]  Per Berglund,et al.  Revealing the Structural Basis of Promiscuous Amine Transaminase Activity , 2013 .

[56]  Jürgen Eck,et al.  Metagenomics and industrial applications , 2005, Nature Reviews Microbiology.

[57]  U. Bornscheuer,et al.  Connecting Unexplored Protein Crystal Structures to Enzymatic Function , 2013 .

[58]  H. Goodman,et al.  DNA nucleotide sequence restricted by the RI endonuclease. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[59]  U. Bornscheuer,et al.  Improved biocatalysts by directed evolution and rational protein design. , 2001, Current opinion in chemical biology.

[60]  U. Bornscheuer,et al.  An enzyme cascade synthesis of ε-caprolactone and its oligomers. , 2015, Angewandte Chemie.

[61]  Paul N. Devine,et al.  Biocatalytic Asymmetric Synthesis of Chiral Amines from Ketones Applied to Sitagliptin Manufacture , 2010, Science.

[62]  J. Keasling,et al.  High-level semi-synthetic production of the potent antimalarial artemisinin , 2013, Nature.

[63]  Jo Handelsman,et al.  Sorting out metagenomes , 2005, Nature Biotechnology.

[64]  E. Fischer Einfluss der Configuration auf die Wirkung der Enzyme , 1894 .

[65]  J. Fruton Early Theories of Protein Structure , 1979, Annals of the New York Academy of Sciences.

[66]  S. Murao,et al.  A Prcliminary Report on a New Enzyme, “Penicillin-amidase” , 1950 .

[67]  Timothy S. Ham,et al.  Production of the antimalarial drug precursor artemisinic acid in engineered yeast , 2006, Nature.

[68]  T. Tosa,et al.  Studies on Continuous Enzyme Reactions , 1969 .

[69]  K. Buchholz,et al.  The roots—a short history of industrial microbiology and biotechnology , 2013, Applied Microbiology and Biotechnology.

[70]  Jürgen Eck,et al.  Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space. , 2002, Current opinion in biotechnology.