The elusive Heisenberg limit in quantum-enhanced metrology

[1]  Marcin Jarzyna,et al.  Quantum interferometry with and without an external phase reference , 2012 .

[2]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[3]  Brian J. Smith,et al.  Optimal quantum phase estimation. , 2008, Physical review letters.

[4]  I. Walmsley,et al.  Experimental quantum-enhanced estimation of a lossy phase shift , 2009, 0906.3511.

[5]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[6]  D. Berry,et al.  Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.

[7]  C. Monroe,et al.  Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. , 2001, Physical review letters.

[8]  Ian A. Walmsley,et al.  Quantum states made to measure , 2009, 0912.4092.

[9]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[10]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[11]  S. Szarek,et al.  An Analysis of Completely-Positive Trace-Preserving Maps on 2x2 Matrices , 2000, quant-ph/0101003.

[12]  David Blair,et al.  A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.

[13]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[14]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[15]  G Khoury,et al.  Multiphoton path entanglement by nonlocal bunching. , 2005, Physical review letters.

[16]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[17]  Hiroshi Imai,et al.  A fibre bundle over manifolds of quantum channels and its application to quantum statistics , 2008 .

[18]  H. M. Wiseman,et al.  Demonstrating Heisenberg-limited unambiguous phase estimation without adaptive measurements , 2008, 0809.3308.

[19]  B. M. Fulk MATH , 1992 .

[20]  A S Sørensen,et al.  Stability of atomic clocks based on entangled atoms. , 2004, Physical review letters.

[21]  M. Holland,et al.  Robustness of Heisenberg-limited interferometry with balanced Fock states , 2008, 0809.1259.

[22]  Vittorio Giovannetti,et al.  Quantum metrology: Beauty and the noisy beast , 2011 .

[23]  P. Dirac Principles of Quantum Mechanics , 1982 .

[24]  Sergio Boixo,et al.  Generalized limits for single-parameter quantum estimation. , 2006, Physical review letters.

[25]  Klaus Mølmer,et al.  OPTICAL COHERENCE : A CONVENIENT FICTION , 1997 .

[26]  Morgan W. Mitchell,et al.  Interaction-based quantum metrology showing scaling beyond the Heisenberg limit , 2012 .

[27]  Morgan W. Mitchell,et al.  Sub-projection-noise sensitivity in broadband atomic magnetometry. , 2010, Physical review letters.

[28]  Vadim N. Smelyanskiy,et al.  Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state , 2010, 1006.1645.

[29]  Keisuke Goda,et al.  A quantum-enhanced prototype gravitational-wave detector , 2008, 0802.4118.

[30]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[31]  Quantum-enhanced phase estimation in the presence of loss , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[32]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[33]  Pieter Kok,et al.  General optimality of the Heisenberg limit for quantum metrology. , 2010, Physical review letters.

[34]  Augusto Smerzi,et al.  Mach-Zehnder interferometry at the Heisenberg limit with coherent and squeezed-vacuum light. , 2007, Physical review letters.

[35]  Jan Kolodynski,et al.  Phase estimation without a priori phase knowledge in the presence of loss , 2010, 1006.0734.

[36]  Jonathan P. Dowling,et al.  CORRELATED INPUT-PORT, MATTER-WAVE INTERFEROMETER : QUANTUM-NOISE LIMITS TO THE ATOM-LASER GYROSCOPE , 1998 .

[37]  Akio Fujiwara,et al.  Quantum channel identification problem , 2001 .

[38]  S. Szarek,et al.  An analysis of completely positive trace-preserving maps on M2 , 2002 .

[39]  Brian J. Smith,et al.  Real-world quantum sensors: evaluating resources for precision measurement. , 2010, Physical review letters.

[40]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[41]  R. J. Sewell,et al.  Interaction-based quantum metrology showing scaling beyond the Heisenberg limit , 2010, Nature.

[42]  K. Banaszek,et al.  Quantum phase estimation with lossy interferometers , 2009, 0904.0456.

[43]  Animesh Datta,et al.  Quantum metrology with imperfect states and detectors , 2010, 1012.0539.

[44]  C. Fabre,et al.  Ultimate sensitivity of precision measurements with Gaussian quantum light : a multi-modal approach , 2011, 1105.2644.

[45]  Moore,et al.  Spin squeezing and reduced quantum noise in spectroscopy. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[46]  Stefano Olivares,et al.  Optical phase estimation in the presence of phase diffusion. , 2010, Physical review letters.

[47]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[48]  K. Jensen,et al.  Quantum noise limited and entanglement-assisted magnetometry , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[49]  K J Resch,et al.  Time-reversal and super-resolving phase measurements. , 2007, Physical review letters.

[50]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[51]  M. W. Mitchell,et al.  Super-resolving phase measurements with a multiphoton entangled state , 2004, Nature.

[52]  Yuan Feng,et al.  Parameter Estimation of Quantum Channels , 2008, IEEE Transactions on Information Theory.

[53]  K.Venkatesh Prasad,et al.  Fundamentals of statistical signal processing: Estimation theory: by Steven M. KAY; Prentice Hall signal processing series; Prentice Hall; Englewood Cliffs, NJ, USA; 1993; xii + 595 pp.; $65; ISBN: 0-13-345711-7 , 1994 .

[54]  Carlton M. Caves,et al.  Qubit metrology and decoherence , 2007, 0705.1002.

[55]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[56]  Keiji Matsumoto,et al.  On metric of quantum channel spaces , 2010 .

[57]  J. Kahn,et al.  Local Asymptotic Normality for Finite Dimensional Quantum Systems , 2008, 0804.3876.

[58]  D. Leibfried,et al.  Toward Heisenberg-Limited Spectroscopy with Multiparticle Entangled States , 2004, Science.

[59]  Wiseman,et al.  Optimal states and almost optimal adaptive measurements for quantum interferometry , 2000, Physical review letters.

[60]  Keiji Sasaki,et al.  Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.

[61]  R. Demkowicz-Dobrzański Multi-pass classical vs. quantum strategies in lossy phase estimation , 2010 .