The elusive Heisenberg limit in quantum-enhanced metrology
暂无分享,去创建一个
Rafał Demkowicz-Dobrzański | Mădălin Guţă | M. Guta | J. Kołodyński | R. Demkowicz-Dobrzański | Jan Kołodyński | M. Guţă
[1] Marcin Jarzyna,et al. Quantum interferometry with and without an external phase reference , 2012 .
[2] Wineland,et al. Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[3] Brian J. Smith,et al. Optimal quantum phase estimation. , 2008, Physical review letters.
[4] I. Walmsley,et al. Experimental quantum-enhanced estimation of a lossy phase shift , 2009, 0906.3511.
[5] C. Caves. Quantum Mechanical Noise in an Interferometer , 1981 .
[6] D. Berry,et al. Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.
[7] C. Monroe,et al. Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. , 2001, Physical review letters.
[8] Ian A. Walmsley,et al. Quantum states made to measure , 2009, 0912.4092.
[9] A. Jamiołkowski. Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .
[10] L. Davidovich,et al. General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.
[11] S. Szarek,et al. An Analysis of Completely-Positive Trace-Preserving Maps on 2x2 Matrices , 2000, quant-ph/0101003.
[12] David Blair,et al. A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.
[13] J. Cirac,et al. Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.
[14] M. Paris. Quantum estimation for quantum technology , 2008, 0804.2981.
[15] G Khoury,et al. Multiphoton path entanglement by nonlocal bunching. , 2005, Physical review letters.
[16] S. Lloyd,et al. Advances in quantum metrology , 2011, 1102.2318.
[17] Hiroshi Imai,et al. A fibre bundle over manifolds of quantum channels and its application to quantum statistics , 2008 .
[18] H. M. Wiseman,et al. Demonstrating Heisenberg-limited unambiguous phase estimation without adaptive measurements , 2008, 0809.3308.
[19] B. M. Fulk. MATH , 1992 .
[20] A S Sørensen,et al. Stability of atomic clocks based on entangled atoms. , 2004, Physical review letters.
[21] M. Holland,et al. Robustness of Heisenberg-limited interferometry with balanced Fock states , 2008, 0809.1259.
[22] Vittorio Giovannetti,et al. Quantum metrology: Beauty and the noisy beast , 2011 .
[23] P. Dirac. Principles of Quantum Mechanics , 1982 .
[24] Sergio Boixo,et al. Generalized limits for single-parameter quantum estimation. , 2006, Physical review letters.
[25] Klaus Mølmer,et al. OPTICAL COHERENCE : A CONVENIENT FICTION , 1997 .
[26] Morgan W. Mitchell,et al. Interaction-based quantum metrology showing scaling beyond the Heisenberg limit , 2012 .
[27] Morgan W. Mitchell,et al. Sub-projection-noise sensitivity in broadband atomic magnetometry. , 2010, Physical review letters.
[28] Vadim N. Smelyanskiy,et al. Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state , 2010, 1006.1645.
[29] Keisuke Goda,et al. A quantum-enhanced prototype gravitational-wave detector , 2008, 0802.4118.
[30] Man-Duen Choi. Completely positive linear maps on complex matrices , 1975 .
[31] Quantum-enhanced phase estimation in the presence of loss , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.
[32] S. Kay. Fundamentals of statistical signal processing: estimation theory , 1993 .
[33] Pieter Kok,et al. General optimality of the Heisenberg limit for quantum metrology. , 2010, Physical review letters.
[34] Augusto Smerzi,et al. Mach-Zehnder interferometry at the Heisenberg limit with coherent and squeezed-vacuum light. , 2007, Physical review letters.
[35] Jan Kolodynski,et al. Phase estimation without a priori phase knowledge in the presence of loss , 2010, 1006.0734.
[36] Jonathan P. Dowling,et al. CORRELATED INPUT-PORT, MATTER-WAVE INTERFEROMETER : QUANTUM-NOISE LIMITS TO THE ATOM-LASER GYROSCOPE , 1998 .
[37] Akio Fujiwara,et al. Quantum channel identification problem , 2001 .
[38] S. Szarek,et al. An analysis of completely positive trace-preserving maps on M2 , 2002 .
[39] Brian J. Smith,et al. Real-world quantum sensors: evaluating resources for precision measurement. , 2010, Physical review letters.
[40] Steven Kay,et al. Fundamentals Of Statistical Signal Processing , 2001 .
[41] R. J. Sewell,et al. Interaction-based quantum metrology showing scaling beyond the Heisenberg limit , 2010, Nature.
[42] K. Banaszek,et al. Quantum phase estimation with lossy interferometers , 2009, 0904.0456.
[43] Animesh Datta,et al. Quantum metrology with imperfect states and detectors , 2010, 1012.0539.
[44] C. Fabre,et al. Ultimate sensitivity of precision measurements with Gaussian quantum light : a multi-modal approach , 2011, 1105.2644.
[45] Moore,et al. Spin squeezing and reduced quantum noise in spectroscopy. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[46] Stefano Olivares,et al. Optical phase estimation in the presence of phase diffusion. , 2010, Physical review letters.
[47] S. Lloyd,et al. Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.
[48] K. Jensen,et al. Quantum noise limited and entanglement-assisted magnetometry , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.
[49] K J Resch,et al. Time-reversal and super-resolving phase measurements. , 2007, Physical review letters.
[50] S. Braunstein,et al. Statistical distance and the geometry of quantum states. , 1994, Physical review letters.
[51] M. W. Mitchell,et al. Super-resolving phase measurements with a multiphoton entangled state , 2004, Nature.
[52] Yuan Feng,et al. Parameter Estimation of Quantum Channels , 2008, IEEE Transactions on Information Theory.
[53] K.Venkatesh Prasad,et al. Fundamentals of statistical signal processing: Estimation theory: by Steven M. KAY; Prentice Hall signal processing series; Prentice Hall; Englewood Cliffs, NJ, USA; 1993; xii + 595 pp.; $65; ISBN: 0-13-345711-7 , 1994 .
[54] Carlton M. Caves,et al. Qubit metrology and decoherence , 2007, 0705.1002.
[55] S. Lloyd,et al. Quantum metrology. , 2005, Physical review letters.
[56] Keiji Matsumoto,et al. On metric of quantum channel spaces , 2010 .
[57] J. Kahn,et al. Local Asymptotic Normality for Finite Dimensional Quantum Systems , 2008, 0804.3876.
[58] D. Leibfried,et al. Toward Heisenberg-Limited Spectroscopy with Multiparticle Entangled States , 2004, Science.
[59] Wiseman,et al. Optimal states and almost optimal adaptive measurements for quantum interferometry , 2000, Physical review letters.
[60] Keiji Sasaki,et al. Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.
[61] R. Demkowicz-Dobrzański. Multi-pass classical vs. quantum strategies in lossy phase estimation , 2010 .