Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors

[1]  Akshay Tambe,et al.  RNA Binding and HEPN-Nuclease Activation Are Decoupled in CRISPR-Cas13a. , 2018, Cell reports.

[2]  Scott Bailey,et al.  Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a) , 2018, Proceedings of the National Academy of Sciences.

[3]  Kira S. Makarova,et al.  Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL domain-containing accessory protein , 2018, Molecular cell.

[4]  Alexis Rohou,et al.  cisTEM: User-friendly software for single-particle image processing , 2017, bioRxiv.

[5]  M. Jinek,et al.  Molecular architectures and mechanisms of Class 2 CRISPR-associated nucleases. , 2017, Current opinion in structural biology.

[6]  Max J. Kellner,et al.  RNA editing with CRISPR-Cas13 , 2017, Science.

[7]  Aviv Regev,et al.  RNA targeting with CRISPR–Cas13 , 2017, Nature.

[8]  J. Shendure,et al.  DNA sequencing at 40: past, present and future , 2017, Nature.

[9]  J. Doudna,et al.  Guide-bound structures of an RNA-targeting A-cleaving CRISPR–Cas13a enzyme , 2017, Nature Structural &Molecular Biology.

[10]  Frank Schwede,et al.  Type III CRISPR–Cas systems produce cyclic oligoadenylate second messengers , 2017, Nature.

[11]  Gene W. Yeo,et al.  Elimination of Toxic Microsatellite Repeat Expansion RNA by RNA-Targeting Cas9 , 2017, Cell.

[12]  Česlovas Venclovas,et al.  A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems , 2017, Science.

[13]  Jun Ma,et al.  The Molecular Architecture for RNA-Guided RNA Cleavage by Cas13a , 2017, Cell.

[14]  Joseph H. Davis,et al.  Addressing preferred specimen orientation in single-particle cryo-EM through tilting , 2017, Nature Methods.

[15]  Ted Natoli,et al.  Evaluation of RNAi and CRISPR technologies by large-scale gene expression profiling in the Connectivity Map , 2017, bioRxiv.

[16]  Eugene V Koonin,et al.  Diversity, classification and evolution of CRISPR-Cas systems. , 2017, Current opinion in microbiology.

[17]  D. Burstein,et al.  RNA Targeting by Functionally Orthogonal Type VI-A CRISPR-Cas Enzymes. , 2017, Molecular cell.

[18]  David A. Scott,et al.  A Survey of Genome Editing Activity for 16 Cpf1 orthologs , 2017, bioRxiv.

[19]  D. C. Swarts,et al.  Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a. , 2017, Molecular cell.

[20]  Aviv Regev,et al.  Nucleic acid detection with CRISPR-Cas13a/C2c2 , 2017, Science.

[21]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[22]  Eunji Kim,et al.  In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni , 2017, Nature Communications.

[23]  Yanli Wang,et al.  Two Distant Catalytic Sites Are Responsible for C2c2 RNase Activities , 2017, Cell.

[24]  A. Regev,et al.  RNA targeting with CRISPR-Cas 13 a , 2017 .

[25]  Lluis Montoliu,et al.  Genome Editing , 2018, Advances in Experimental Medicine and Biology.

[26]  Justin M Kollman,et al.  Vitrification after multiple rounds of sample application and blotting improves particle density on cryo-electron microscopy grids , 2016, bioRxiv.

[27]  Sergey A. Shmakov,et al.  Cas13b is a Type VI-B CRISPR-associated RNA-Guided RNase differentially regulated by accessory proteins Csx27 and Csx28 , 2016, bioRxiv.

[28]  Jennifer A. Doudna,et al.  Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection , 2016, Nature.

[29]  J. Doudna,et al.  Protecting genome integrity during CRISPR immune adaptation , 2016, Nature Structural &Molecular Biology.

[30]  Irini Angelidaki,et al.  Deeper insight into the structure of the anaerobic digestion microbial community; the biogas microbiome database is expanded with 157 new genomes. , 2016, Bioresource technology.

[31]  E. Mandelkow,et al.  MMP-9 and MMP-2 Contribute to Neuronal Cell Death in iPSC Models of Frontotemporal Dementia with MAPT Mutations , 2016, Stem cell reports.

[32]  E. Lindahl,et al.  Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2 , 2016, bioRxiv.

[33]  Timothy A. Miller,et al.  Increased 4R-Tau Induces Pathological Changes in a Human-Tau Mouse Model , 2016, Neuron.

[34]  Eric S. Lander,et al.  C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector , 2016, Science.

[35]  Ines Fonfara,et al.  The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA , 2016, Nature.

[36]  Jacqueline Montes,et al.  Results from a phase 1 study of nusinersen (ISIS-SMNRx) in children with spinal muscular atrophy , 2016, Neurology.

[37]  M. Jinek,et al.  Structural basis for the endoribonuclease activity of the type III-A CRISPR-associated protein Csm6 , 2016, RNA.

[38]  Luciano A. Marraffini,et al.  Degradation of Phage Transcripts by CRISPR-Associated RNases Enables Type III CRISPR-Cas Immunity , 2016, Cell.

[39]  M. F. White,et al.  Multiple nucleic acid cleavage modes in divergent type III CRISPR systems , 2016, Nucleic acids research.

[40]  Sergey A. Shmakov,et al.  CRISPR EVOLUTION C 2 c 2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector , 2016 .

[41]  Sita J. Saunders,et al.  An updated evolutionary classification of CRISPR–Cas systems , 2015, Nature Reviews Microbiology.

[42]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[43]  Luigi Naldini,et al.  Gene therapy returns to centre stage , 2015, Nature.

[44]  Eugene V Koonin,et al.  Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. , 2015, Molecular cell.

[45]  Feng Zhang,et al.  Orthogonal gene knock out and activation with a catalytically active Cas9 nuclease , 2015, Nature Biotechnology.

[46]  Jennifer A. Doudna,et al.  Conformational control of DNA target cleavage by CRISPR–Cas9 , 2015, Nature.

[47]  A. Regev,et al.  Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System , 2015, Cell.

[48]  G. Church,et al.  Cas9 gRNA engineering for genome editing, activation and repression , 2015, Nature Methods.

[49]  Yinqing Li,et al.  Crystal Structure of Staphylococcus aureus Cas9 , 2015, Cell.

[50]  Kai Zhang,et al.  Gctf: Real-time CTF determination and correction , 2015, bioRxiv.

[51]  Nikolaus Grigorieff,et al.  Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6 , 2015, eLife.

[52]  Luciano A. Marraffini,et al.  Co-transcriptional DNA and RNA Cleavage during Type III CRISPR-Cas Immunity , 2015, Cell.

[53]  David A. Scott,et al.  In vivo genome editing using Staphylococcus aureus Cas9 , 2015, Nature.

[54]  Yanmei Xu,et al.  Mechanism of alternative splicing and its regulation (Review) , 2015 .

[55]  Luke A. Gilbert,et al.  Engineering Complex Synthetic Transcriptional Programs with CRISPR RNA Scaffolds , 2015, Cell.

[56]  Feng Zhang,et al.  In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9 , 2014, Nature Biotechnology.

[57]  J. Vogel,et al.  Investigating CRISPR RNA Biogenesis and Function Using RNA-seq. , 2015, Methods in molecular biology.

[58]  Yan Wang,et al.  Mechanism of alternative splicing and its regulation. , 2015, Biomedical reports.

[59]  D. Weis,et al.  Mapping Residual Structure in Intrinsically Disordered Proteins at Residue Resolution Using Millisecond Hydrogen/Deuterium Exchange and Residue Averaging , 2015, Journal of The American Society for Mass Spectrometry.

[60]  J. Doudna,et al.  The new frontier of genome engineering with CRISPR-Cas9 , 2014, Science.

[61]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[62]  Max A. Horlbeck,et al.  Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation , 2014, Cell.

[63]  Benjamin L. Oakes,et al.  Programmable RNA recognition and cleavage by CRISPR/Cas9 , 2014, Nature.

[64]  J. Oost,et al.  Unravelling the structural and mechanistic basis of CRISPR–Cas systems , 2014, Nature Reviews Microbiology.

[65]  E. Lander,et al.  Development and Applications of CRISPR-Cas9 for Genome Engineering , 2014, Cell.

[66]  Jennifer A. Doudna,et al.  Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation , 2014, Science.

[67]  J. Donovan,et al.  Structure of Human RNase L Reveals the Basis for Regulated RNA Decay in the IFN Response , 2014, Science.

[68]  A. Gregory Matera,et al.  A day in the life of the spliceosome , 2014, Nature Reviews Molecular Cell Biology.

[69]  Feng Zhang,et al.  Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA , 2014, Cell.

[70]  Jennifer A. Doudna,et al.  DNA interrogation by the CRISPR RNA-guided endonuclease Cas9 , 2014, Nature.

[71]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[72]  Luke A. Gilbert,et al.  CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes , 2013, Cell.

[73]  E. Koonin,et al.  Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing , 2013, Biology Direct.

[74]  T. Südhof,et al.  Rapid Single-Step Induction of Functional Neurons from Human Pluripotent Stem Cells , 2013, Neuron.

[75]  Emmanuelle Charpentier,et al.  The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems , 2013, RNA biology.

[76]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[77]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[78]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[79]  Robert V Farese,et al.  Induced pluripotent stem cell models of progranulin-deficient frontotemporal dementia uncover specific reversible neuronal defects. , 2012, Cell reports.

[80]  R. Barrangou,et al.  Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria , 2012, Proceedings of the National Academy of Sciences.

[81]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[82]  M. J. Chalmers,et al.  HDX Workbench: Software for the Analysis of H/D Exchange MS Data , 2012, Journal of The American Society for Mass Spectrometry.

[83]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[84]  Randall W. King,et al.  A Bioinformatics Method Identifies Prominent Off-targeted Transcripts in RNAi Screens , 2012, Nature Methods.

[85]  U. Qimron,et al.  Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli , 2012, Nucleic acids research.

[86]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[87]  S. Hammond,et al.  Genetic therapies for RNA mis-splicing diseases. , 2011, Trends in genetics : TIG.

[88]  J. Vogel,et al.  CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III , 2011, Nature.

[89]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[90]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[91]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[92]  Jun Yao,et al.  Proteomic dissection of cell type-specific H2AX-interacting protein complex associated with hepatocellular carcinoma. , 2010, Journal of proteome research.

[93]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[94]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[95]  B. Graveley,et al.  RNA-Guided RNA Cleavage by a CRISPR RNA-Cas Protein Complex , 2009, Cell.

[96]  Christopher Irving,et al.  Appion: an integrated, database-driven pipeline to facilitate EM image processing. , 2009, Journal of structural biology.

[97]  Stan J. J. Brouns,et al.  Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes , 2008, Science.

[98]  B. Boeve,et al.  Refining frontotemporal dementia with parkinsonism linked to chromosome 17: introducing FTDP-17 (MAPT) and FTDP-17 (PGRN). , 2008, Archives of neurology.

[99]  Kevin P. Murphy,et al.  Efficient parameter estimation for RNA secondary structure prediction , 2007, ISMB/ECCB.

[100]  Ibtissem Grissa,et al.  CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats , 2007, Nucleic Acids Res..

[101]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[102]  Chao Yang,et al.  SPARX, a new environment for Cryo-EM image processing. , 2007, Journal of structural biology.

[103]  Nikos Kyrpides,et al.  CRISPR Recognition Tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats , 2007, BMC Bioinformatics.

[104]  Robert C. Edgar,et al.  PILER-CR: Fast and accurate identification of CRISPR repeats , 2007, BMC Bioinformatics.

[105]  James P. Orengo,et al.  A bichromatic fluorescent reporter for cell-based screens of alternative splicing , 2006, Nucleic acids research.

[106]  S. Englander Hydrogen exchange and mass spectrometry: A historical perspective , 2006, Journal of the American Society for Mass Spectrometry.

[107]  C. Cheong,et al.  Engineering RNA sequence specificity of Pumilio repeats , 2006, Proceedings of the National Academy of Sciences.

[108]  E. Bradbury,et al.  The Dynamic Alterations of H2AX Complex during DNA Repair Detected by a Proteomic Approach Reveal the Critical Roles of Ca2+/Calmodulin in the Ionizing Radiation-induced Cell Cycle Arrest*S , 2006, Molecular & Cellular Proteomics.

[109]  Anastasia Khvorova,et al.  3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets , 2006, Nature Methods.

[110]  Scott A. Busby,et al.  Probing protein ligand interactions by automated hydrogen/deuterium exchange mass spectrometry. , 2006, Analytical chemistry.

[111]  Jane Y. Wu,et al.  Tau Alternative Splicing and Frontotemporal Dementia , 2005, Alzheimer disease and associated disorders.

[112]  Anchi Cheng,et al.  Automated molecular microscopy: the new Leginon system. , 2005, Journal of structural biology.

[113]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[114]  A M Roseman,et al.  FindEM--a fast, efficient program for automatic selection of particles from electron micrographs. , 2004, Journal of structural biology.

[115]  B. Li,et al.  Expression profiling reveals off-target gene regulation by RNAi , 2003, Nature Biotechnology.

[116]  Phillip A Sharp,et al.  siRNAs can function as miRNAs , 2003 .

[117]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[118]  Zhongqi Zhang,et al.  Determination of amide hydrogen exchange by mass spectrometry: A new tool for protein structure elucidation , 1993, Protein science : a publication of the Protein Society.

[119]  D. Peabody,et al.  The RNA binding site of bacteriophage MS2 coat protein. , 1993, The EMBO journal.

[120]  Ted Natoli,et al.  Evaluation of RNAi and CRISPR technologies by large-scale gene expression profiling in the Connectivity Map , 2017, bioRxiv.

[121]  D. Burstein,et al.  RNA Targeting by Functionally Orthogonal Type VI-A CRISPR-Cas Enzymes. , 2017, Molecular cell.

[122]  J. Doudna,et al.  Protecting genome integrity during CRISPR immune adaptation , 2016, Nature Structural &Molecular Biology.

[123]  Irini Angelidaki,et al.  Deeper insight into the structure of the anaerobic digestion microbial community; the biogas microbiome database is expanded with 157 new genomes. , 2016, Bioresource technology.

[124]  E. Mandelkow,et al.  MMP-9 and MMP-2 Contribute to Neuronal Cell Death in iPSC Models of Frontotemporal Dementia with MAPT Mutations , 2016, Stem cell reports.

[125]  Timothy A. Miller,et al.  Increased 4R-Tau Induces Pathological Changes in a Human-Tau Mouse Model , 2016, Neuron.

[126]  Ines Fonfara,et al.  The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA , 2016, Nature.

[127]  Jacqueline Montes,et al.  Results from a phase 1 study of nusinersen (ISIS-SMNRx) in children with spinal muscular atrophy , 2016, Neurology.

[128]  M. F. White,et al.  Multiple nucleic acid cleavage modes in divergent type III CRISPR systems , 2016, Nucleic acids research.

[129]  Sita J. Saunders,et al.  An updated evolutionary classification of CRISPR–Cas systems , 2015, Nature Reviews Microbiology.

[130]  A. Regev,et al.  Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System , 2015, Cell.

[131]  Luciano A. Marraffini,et al.  Co-transcriptional DNA and RNA Cleavage during Type III CRISPR-Cas Immunity , 2015, Cell.

[132]  Yan Wang,et al.  Mechanism of alternative splicing and its regulation. , 2015, Biomedical reports.

[133]  Max A. Horlbeck,et al.  Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation , 2014, Cell.

[134]  Benjamin L. Oakes,et al.  Programmable RNA recognition and cleavage by CRISPR/Cas9 , 2014, Nature.

[135]  J. Oost,et al.  Unravelling the structural and mechanistic basis of CRISPR–Cas systems , 2014, Nature Reviews Microbiology.

[136]  Zefeng Wang,et al.  A day in the life of the spliceosome , 2014, Nature Reviews Molecular Cell Biology.

[137]  R. Barrangou,et al.  Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria , 2012, Proceedings of the National Academy of Sciences.

[138]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[139]  U. Qimron,et al.  Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli , 2012, Nucleic acids research.

[140]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[141]  B. Boeve,et al.  Refining frontotemporal dementia with parkinsonism linked to chromosome 17: introducing FTDP-17 (MAPT) and FTDP-17 (PGRN). , 2008, Archives of neurology.

[142]  Kevin P. Murphy,et al.  Efficient parameter estimation for RNA secondary structure prediction , 2007, ISMB/ECCB.

[143]  Nikos Kyrpides,et al.  CRISPR Recognition Tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats , 2007, BMC Bioinformatics.

[144]  James P. Orengo,et al.  A bichromatic fluorescent reporter for cell-based screens of alternative splicing , 2006, Nucleic acids research.

[145]  C. Cheong,et al.  Engineering RNA sequence specificity of Pumilio repeats , 2006, Proceedings of the National Academy of Sciences.

[146]  E. Bradbury,et al.  The Dynamic Alterations of H2AX Complex during DNA Repair Detected by a Proteomic Approach Reveal the Critical Roles of Ca2+/Calmodulin in the Ionizing Radiation-induced Cell Cycle Arrest*S , 2006, Molecular & Cellular Proteomics.

[147]  Jane Y. Wu,et al.  Tau Alternative Splicing and Frontotemporal Dementia , 2005, Alzheimer disease and associated disorders.

[148]  B. Li,et al.  Expression profiling reveals off-target gene regulation by RNAi , 2003, Nature Biotechnology.

[149]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[150]  D. Peabody,et al.  The RNA binding site of bacteriophage MS2 coat protein. , 1993, The EMBO journal.