Super electron donor-mediated reductive desulfurization reactions.

The desulfurization of thioacetals and thioethers by a pyridine-derived electron donor is described. This methodology provides efficient access to the reduced products in high yields and does not require the use of transition-metals, elemental alkali-metals, or hydrogen atom donors.

[1]  T. Tuttle,et al.  CatalySED! Neutral Organic Super Electron Donors Made Catalytic. , 2019, Angewandte Chemie.

[2]  M. Miura,et al.  Iridium-Catalyzed Direct C4- and C7-Selective Alkynylation of Indoles Using Sulfur-Directing Groups. , 2019, Angewandte Chemie.

[3]  H. Yorimitsu,et al.  Catalytic inter- and intramolecular coupling of aryl sulfones , 2019, Phosphorus, Sulfur, and Silicon and the Related Elements.

[4]  H. Yorimitsu,et al.  Palladium-Catalyzed Alkoxycarbonylation of Arylsulfoniums. , 2019, Organic letters.

[5]  D. Dixon,et al.  Dithiane-directed Rh(iii)-catalyzed amidation of unactivated C(sp3)–H bonds† †Electronic supplementary information (ESI) available: Experimental protocol and spectra data. See DOI: 10.1039/c8sc05225e , 2019, Chemical science.

[6]  S. Moon,et al.  Thioether-Directed Peri-Selective C-H Arylation under Rhodium Catalysis: Synthesis of Arene-Fused Thioxanthenes. , 2019, Organic letters.

[7]  H. Yorimitsu,et al.  Intramolecular Desulfitative Coupling: Nickel-Catalyzed Transformation of Diaryl Sulfones into Biaryls via Extrusion of SO2. , 2018, Organic letters.

[8]  John A. Murphy,et al.  Reduction of nitroarenes, azoarenes and hydrazine derivatives by an organic super electron donor , 2018, Tetrahedron.

[9]  M. Miura,et al.  Thioether-Directed Selective C4 C-H Alkenylation of Indoles under Rhodium Catalysis. , 2018, Organic letters.

[10]  M. Alami,et al.  Chlorotrimethylsilane and Sodium Iodide: A Remarkable Metal‐Free Association for the Desulfurization of Benzylic Dithioketals under Mild Conditions , 2018 .

[11]  T. Satoh,et al.  Rhodium‐Catalyzed peri‐Selective Direct Alkenylation of 1‐(Methylthio)naphthalene , 2018 .

[12]  Erina Abe,et al.  Super electron donor-mediated reductive transformation of nitrobenzenes: a novel strategy to synthesize azobenzenes and phenazines. , 2018, Organic & biomolecular chemistry.

[13]  H. Yorimitsu,et al.  Palladium-Catalyzed Amination of Aryl Sulfoxides. , 2018, Organic letters.

[14]  M. Alami,et al.  Desulfurization of Thioketals into Methylene and Methyl Derivatives: Nickel or not Nickel? , 2017 .

[15]  M. Rueping,et al.  Metal-free reduction of the greenhouse gas sulfur hexafluoride, formation of SF5 containing ion pairs and the application in fluorinations , 2017 .

[16]  A. Osuka,et al.  Cross-coupling of Aryl Sulfides Powered by N-Heterocyclic Carbene Ligands , 2016 .

[17]  D. Procter,et al.  Iron-mediated oxidative C-H coupling of arenes and alkenes directed by sulfur: an expedient route to dihydrobenzofurans. , 2016, Organic & biomolecular chemistry.

[18]  N. Chatani,et al.  Palladium(ii)-catalyzed synthesis of dibenzothiophene derivatives via the cleavage of carbon–sulfur and carbon–hydrogen bonds† †Electronic supplementary information (ESI) available: Experimental procedures and characterization data for all new compounds. See DOI: 10.1039/c5sc04890g , 2016, Chemical science.

[19]  Simon S. Woo,et al.  Desulfination as an Emerging Strat­egy in Palladium‐Catalyzed C–C Coupling Reactions , 2016 .

[20]  John A. Murphy,et al.  Pushing the Limits of Neutral Organic Electron Donors: A Tetra(iminophosphorano)-Substituted Bispyridinylidene , 2015, Angewandte Chemie.

[21]  Yuhong Zhang,et al.  Thioether-directed acetoxylation of C(sp2)–H bonds of arenes by palladium catalysis , 2015 .

[22]  K. Kondo,et al.  B(C6F5)3-Catalyzed Hydrodesulfurization Using Hydrosilanes--Metal-Free Reduction of Sulfides. , 2015, Organic letters.

[23]  K. Hirano,et al.  Rhodium(III)-catalyzed oxidative alkenylation of 1,3-dithiane-protected arenecarbaldehydes via regioselective C-H bond cleavage. , 2015, Organic letters.

[24]  R. Breinbauer,et al.  Recent Advances and Applications of Reductive Desulfurization in Organic Synthesis , 2014 .

[25]  John A. Murphy,et al.  Reductive decyanation of malononitriles and cyanoacetates using photoactivated neutral organic super-electron-donors , 2014 .

[26]  John A. Murphy,et al.  Evolution of neutral organic super-electron-donors and their applications. , 2014, Chemical communications.

[27]  John A. Murphy Discovery and Development of Organic Super-Electron-Donors , 2014, The Journal of organic chemistry.

[28]  T. Terme,et al.  Organic electron donors as powerful single-electron reducing agents in organic synthesis. , 2014, Angewandte Chemie.

[29]  Zhangjie Shi,et al.  Recent Advances in Transition-Metal-Catalyzed C–S Activation: From Thioester to (Hetero)aryl Thioether , 2014 .

[30]  E. V. Van der Eycken,et al.  Transition metal-catalyzed C-C bond formation via C-S bond cleavage: an overview. , 2013, Chemical Society reviews.

[31]  Gabriela Oksdath-Mansilla,et al.  Photoreduction of aliphatic and aromatic thioketals: new access to the reduction of carbonyl groups by a desulfurization chain process , 2013 .

[32]  Zhengkun Yu,et al.  Transition-metal mediated carbon-sulfur bond activation and transformations. , 2013, Chemical Society reviews.

[33]  John A. Murphy,et al.  Reactions of triflate esters and triflamides with an organic neutral super-electron-donor. , 2012, Organic & biomolecular chemistry.

[34]  L. Berlouis,et al.  Hybrid super electron donors – preparation and reactivity , 2012, Beilstein journal of organic chemistry.

[35]  John A. Murphy,et al.  Electron transfer to benzenes by photoactivated neutral organic electron donor molecules. , 2012, Angewandte Chemie.

[36]  C. Prandi,et al.  A concise route to α'-methoxy-γ-pyrones and verticipyrone based upon the desymmetrization of α,α'-dimethoxy-γ-pyrone. , 2010, Chemistry.

[37]  N. Findlay,et al.  Metal-free reductive cleavage of C-O sigma-bonds in acyloin derivatives by an organic neutral super-electron-donor. , 2009, The Journal of organic chemistry.

[38]  Andrew Turner,et al.  Super-electron donors: bis-pyridinylidene formation by base treatment of pyridinium salts. , 2008, Organic letters.

[39]  V. Lynch,et al.  Synthesis and study of differentially substituted dibenzotetraazafulvalenes. , 2007, Organic letters.

[40]  T. Tuttle,et al.  Reductive cleavage of sulfones and sulfonamides by a neutral organic super-electron-donor (S.E.D.) reagent. , 2007, Journal of the American Chemical Society.

[41]  P. Vogel,et al.  Organosulfur compounds: electrophilic reagents in transition-metal-catalyzed carbon-carbon bond-forming reactions. , 2005, Angewandte Chemie.

[42]  M. Mahesh,et al.  Highly efficient reduction of unactivated aryl and alkyl iodides by a ground-state neutral organic electron donor. , 2005, Angewandte Chemie.

[43]  M. Yus,et al.  The role of 1,3-dithianes in natural product synthesis , 2003 .

[44]  J. R. Ames,et al.  Annulated derivatives of 2,2′-biimidazole, 2-(2′-imidazolyl)benzimidazole, and 2,2′-bibenzimidazole , 1997 .

[45]  OkiMichinori,et al.  THE EFFECTS OF THE NEIGHBORING METHOXYCARBONYL GROUP AND SULFUR ATOM(S) IN THE CARBON–SULFUR BOND CLEAVAGE AND THE ESTER EXCHANGE IN FLUORENE SYSTEMS , 1983 .

[46]  D. Seebach,et al.  Methods of Reactivity Umpolung , 1979 .

[47]  D. Seebach,et al.  Umpolung of the Reactivity of Carbonyl Compounds Through Sulfur-Containing Reagents , 1977 .

[48]  E. Corey,et al.  Generation and synthetic applications of 2-lithio-1,3-dithianes , 1975 .

[49]  E. Corey,et al.  Carbanions of 1,3-Dithianes. Reagents for CC Bond Formation by Nucleophilic Displacement and Carbonyl Addition , 1965 .